

Ensemble Machine Learning

A beginner's guide that combines
powerful machine learning algorithms
to build optimized models

Ankit Dixit

BIRMINGHAM - MUMBAI

Ensemble Machine
Learning

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may
be reproduced, stored in a retrieval system, or
transmitted in any form or by any means,
without the prior written permission of the
publisher, except in the case of brief
quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation
of this book to ensure the accuracy of the
information presented. However, the

information contained in this book is sold
without warranty, either express or implied.
Neither the author, nor Packt Publishing, and
its dealers and distributors will be held liable
for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide
trademark information about all of the
companies and products mentioned in this
book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee
the accuracy of this information.

First published: December 2017

Production reference: 1191217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-775-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

 Ankit Dixit

Reviewers

Apeksha Jain

Radovan Kavicky

Commissioning Editor

Sunith Shetty

Acquisition Editor

Viraj Madhav

Content Development Editor

Aishwarya Pandere

Technical Editor

Suwarna Patil

About the Author
Ankit Dixit is a data scientist and computer
vision engineer from Mumbai. Ankit has
studied BTech in biomedical engineering and
has a master's degree in computer vision
specialization. He has worked in the field of
computer vision and machine learning for the
past 6 years. He has worked with various
software and hardware platforms for the
design and development of machine vision
algorithms. Ankit has experience with a wide
variety of machine learning algorithms.
Currently, he is focusing on designing
computer vision and machine learning
algorithms for medical imaging data, with the
use of various advanced technologies such as
ensemble methods and deep learning-based
models.

About the Reviewers
Apeksha Jain is a data scientist and
computer vision engineer from Mumbai,
India. She holds a BTech in biomedical
engineering and has a master's degree in
computer vision specialization. She has been
working in the field of computer vision and
machine learning for more than 6 years. She
has used various software and hardware
platforms for the design and development of
machine vision algorithms, and has
experience on various machine learning
algorithms, including deep learning.
Currently, she is working on designing
computer vision and machine learning
algorithms for medical imaging data for
Aditya Imaging and Information
Technologies (part of the Sun Pharmaceutical
advanced research center), Mumbai. She does
this with the use of various advanced
technologies such as ensemble methods and

deep learning-based models.

Radovan Kavicky is the principal data
scientist and president at GapData Institute,
based in Bratislava, Slovakia, where he
harnesses the power of data and wisdom of
economics for public good. He is a
macroeconomist by education, and consultant
and analyst by profession (8+ years of
experience in consulting for clients from the
public and private sectors), with strong
mathematical and analytical skills. He is able
to deliver top-level research and analytical
work. From MATLAB, SAS, and Stata, he
switched to Python, R, and Tableau.

Radovan is an evangelist of open data and a
member of the Slovak Economic Association
(SEA), Open Budget Initiative, Open
Government Partnership, and the global
Tableau #DataLeader network (2017). He is
the founder of PyData Bratislava, R <-
Slovakia, and the SK/CZ Tableau User Group
(skczTUG). He has been a speaker at
@TechSummit (Bratislava, 2017) and

@PyData (Berlin, 2017).

You can follow him on Twitter at
@radovankavicky, @GapDataInst, or
@PyDataBA. His full profile and experience
are available at https://www.linkedin.com/in/radovanka
vicky/ and https://github.com/radovankavicky.

GapData Institute: https://www.gapdata.org.

https://www.linkedin.com/in/radovankavicky/
https://github.com/radovankavicky
https://www.gapdata.org

www.PacktPub.com
For support files and downloads related to
your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook
versions of every book published, with PDF
and ePub files available? You can upgrade to
the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a
discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a
collection of free technical articles, sign up
for a range of free newsletters and receive
exclusive discounts and offers on Packt books
and eBooks.

https://www.packtpub.com/mapt

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Get the most in-demand software skills with
Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-
leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book
published by Packt
Copy and paste, print, and bookmark
content
On demand and accessible via a web
browser

Customer Feedback
Thanks for purchasing this Packt book. At
Packt, quality is at the heart of our editorial
process. To help us improve, please leave us
an honest review on this book's Amazon page
at https://www.amazon.com/dp/178829775X.

If you'd like to join our team of regular
reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our
regular reviewers with free eBooks and
videos in exchange for their valuable
feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/178829775X

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to Ensemble Learning
What is ensemble machine learning?
The purpose of ensemble machine learning
How to create an ensemble system
Quantification of performance
Bias and variance errors
 Methods to create ensemble systems

Bagging
Boosting
Stacking

Summary

2. Decision Trees
How do decision trees work?
ID3 algorithm for decision tree building

Root node
Salary
The Sex attribute
Marital status

Parent node
Choosing between the Sex and Ma
rital attributes for the low salary gr
oup
Choosing between the Sex and Ma
rital attributes for the Med salary g
roup
Marital status

Case study – car evaluation problem
Summary

3. Random Forest
Classification and regression trees

Gini index for impurity check
Node selection

Creating a split
Tree building

At depth – 1 (root node)
At depth – 2 (left branch)
At depth – 2 (right branch)

Case study – breast cancer type prediction
Decision tree bagging

From bagging to random forest
Summary

4. Random Subspace and KNN Bagging
Subspace bagging
Case study – subspace bagging

 More information about the dataset
KNN classification
KNN for spam filtering

Dataset
Dataset information
Attribute information

KNN bagging with random subspaces
Summary

5. AdaBoost Classifier
Boosting
AdaBoost in a nutshell

Weak classifier
AdaBoost in action

Application of the AdaBoost classifier in face d
etection

Face detection using Haar cascades
Integral image

Implementation using OpenCV
Summary

6. Gradient Boosting Machines
Gradient Boosting Machines

What is the difference?
Create split
Node selection
Build tree

Regression tree as a classifier
GBM implementation

Algorithm
Improvements to basic gradient boosting

Tree constraints
Weighted updates
Stochastic gradient boosting
Penalized gradient boosting

Summary
7. XGBoost – eXtreme Gradient Boosting

XGBoost – supervised learning
Models and parameters
Objective function – training loss + regul
arization
Why introduce the general principle?

XGBoost features
Model features
System features
Algorithm features

Why use XGBoost?

XGBoost execution speed
Model performance

How to install
Building the shared library

Building on Ubuntu/Debian
Building on Windows
A trick for easy installation on a
Windows machine

XGBoost in action
Dataset information
Attribute information

XGBoost parameters
General parameters

Booster parameters
Learning task parameters

Parameter tuning – number and size of d
ecision trees

Problem description – Otto dataset
Tune the number of decision trees
in XGBoost
Tuning the size of decision trees i
n XGBoost
Tuning the number of trees and m
ax depth in XGBoost

Summary
8. Stacked Generalization

Stacked generalization
Submodel training

KNN classification
Distance calculation (Euclidean)
Estimating the neighbors
Making predictions using voting

Perceptron
Training the perceptron
Gradient descent
Stochastic gradient descent
Implementation of perceptron

Logistic regression
The logistic function
Representation of logistic regressi
on
Modeling probability using logisti
c regression
Learning the model
Prediction using logistic regressio
n
Implementation of algorithm

Stacked generalization implementation
Practical application – Sonar dataset (Mine and
Rock prediction)

More information about the dataset
Summary

9. Stacked Generalization – Part 2
Feature selection

Why feature selection?
Simplification of models

Dataset information
Predicted attribute
Attribute information

Shorter training time
To avoid the curse of dimensionali
ty
Enhanced generalization by reduci
ng overfitting

Feature selection for machine learning
 Univariate selection
Recursive Feature Elimination
Principle Component Analysis
Choosing important features (feature imp
ortance)

Understanding the SVM
How does SVM work?

 Hyperplane – separation between
the data points

Implementation of an SVM
Objective function
Function optimization
Handling a nonlinear dataset

Stacking of nonlinear algorithms

Spam classification with stacking
Dataset information
Attribute information

How to choose classifiers?
Summary

10. Modern Day Machine Learning
Artificial Neural Networks (feed-forward)

How does ANN work?
Training of ANNs

Learning by backpropagation
ANN implementation using Keras and T
ensorFlow

TensorFlow for machine learning
Keras for machine learning

Digit classification using Keras and Tens
orFlow

Deep learning
Convolutional Neural Networks

Local receptive fields
Shared weights and biases
Pooling layers
Combining all the layers

Implementation of CNN in Python
Recurrent Neural Networks

How RNN works (unrolling RNN)
Unrolling the forward pass
Unrolling the backward pass

Backpropagation Through Time
Backpropagation training al
gorithm
Backpropagation Through
Time

Long Short-Term Memory networks
The idea behind LSTMs
Step-by-step LSTM walkthrough
Text generation using LSTM

Problem description – project Gut
enberg
LSTM model
Generating text with an LSTM Ne
twork

Summary
11. Troubleshooting

Full code of the implemented algorithm ID3
Code of the CART algorithm
Code for random forest
Code for KNN and subspace bagging

 KNN subspace bagging code
Code of the AdaBoost classifier
Code of GBMs
Full code of implementation
Full code of LSTM implementation

Preface
Science has given us its biggest
gift: Computers. This invention is as
significant as Fire. It has changed the history
of mankind. Tell me any field of work where
computers are not being used; I bet you
cannot. Computers are special kind of species
that only eats electricity and one precious
thing in which all of the world is interested,
information a.k.a. DATA. Yes, without data,
there is no use of a computer; it is just a
television-like screen and nothing more. So
the next question arises: What to do with this
data? Believe me, every chapter of this book
will give you a perspective to utilize your
data and extract useful results from it.

What this book
covers
Chapter 1, Introduction to Ensemble Learning,
is our introductory chapter to the world of
ensembles. So we will see how ensembles
can be useful for getting high accuracy from
classifiers, and how to quantify the
performance of a classifier by analyzing
variance and bias errors. We will discuss
three important aspects of ensemble
algorithms: bagging, boosting, and stacking.
We will see decision tree bagging in this
chapter. We will also see how boosting works
and how to use it. At the end, we will discuss
what stacking is and how to implement
stacked generalization.

Chapter 2, Decision Trees, teaches us about
the creation of decision trees for making
predictions on our dataset and how to code it
in Python and then use this algorithm to make

predictions on Car dataset.

Chapter 3, Random Forest, shows how can we
make decisions on real-world numerical data
using a decision tree. We will learn how a
simple binary tree can be converted into a
decent classifier; then we will use multiple
such decision trees to create a forest of trees,
which is known as the random forest
algorithm. We will code this from scratch to
apply it and a real-world dataset.

Chapter 4, Random Subspace and KNN
Bagging, covers random subspaces and how
they can improve the classification accuracy
of a simple classifier. We will see how this
method can improve the results when we use
ensemble methods; we will also work with
the KNN algorithm and its practical
applications, and improve our classification
accuracy using subspace bagging with k-NN
for spam classification.

Chapter 5, AdaBoost Classifier, is the starting
point for the boosting algorithm. We will

learn boosting itself in detail; then we will
learn to create a decision stump to make a
simple boosting solution. We will see how to
put many simple classifiers in a series to
solve complex problem and we will write our
own code for the AdaBoost algorithm. Later
in the chapter, we will see how we can use
AdaBoost in a face detection task.

Chapter 6, Gradient Boosting Machines,
covers the basics of gradient boosting. We'll
start from the basic concepts of gradient
boosting. We will also see what regression
is and how a regression tree works. Then we
will implement a working regression tree
ourselves and use it to fit a sinusoidal
function; afterwards, we will see how to use a
regression tree as a classifier. Then we will
implement the theoretical concept of the
gradient boosting machine in practical code
and see how it can reduce prediction.

Chapter 7, XGBoost – eXtreme Gradient
Boosting, talks about the extreme gradient
boosting library XGBoost. We will start with

a general description of XGBoost and then
discuss the advantages of this third-party
library. We will discuss the various
parameters of the library in detail; we can
tune them to obtain a good prediction
accuracy from the classifier. We will work
with two practical applications, which can
help us to apply the algorithm to complex
datasets.

Chapter 8, Stacked Generalization, discusses
the stacking of different classifiers. We will
start with a simple introduction to the
stacking process and cover linear classifiers
in combination. We will create a stack of
three classifiers and, during the process, learn
two very useful classification models:
perceptrons and logistic regression. We will
see how a gradient descent algorithm can
help us train a single perceptron for
prediction purposes and cover the core
concepts of logistic regression. We will train
our logistic regression model using the same
gradient descent algorithm; finally, we will
create a stack and apply it to a practical

dataset.

Chapter 9, Stacked Generalization – Part 2,
teaches the stacking of linear and nonlinear
algorithms for prediction. We will start with
feature selection methods, where we will
discuss the importance of feature selection
and its benefits by implementing various
feature selection algorithms using the sklearn
library. We will see how feature selection can
reduce the curse of dimensionality and
improve the performance of the classifier by
reducing the variance-bias trade-off. We will
discuss support vector machines in detail by
implementing one from scratch and see how
to optimize its loss function using gradient
descent algorithm. We will also see how to
use the kernel trick to address the problem of
non-separable datasets. In the end, we will
come back to stacking, this time with a bang!
We will use six different classifiers to create
a stack and use the bagging strategy to predict
the output.

Chapter 10, Modern Day Machine Learning,

this chapter will talk about machine learning
algorithms being used in current trend. We
will start with simple definitions of artificial
neural networks and how to train them using
stochastic gradient descent and the
backpropagation algorithm. Then we will
implement a network for digit recognition
from the MNIST dataset, and see how
convolutional neural networks work and why
they have an advantage over normal neural
network. Afterwards, we will implement a
CNN for a digit recognition problem. Then
we will turn our learning train towards
networks used in the natural language
processing domain. We will see the
motivation behind RNNs, how they work,
and a very popular and successful type of
RNN: LSTM networks. These networks are
widely used in text generation tasks. We will
see a detailed description of how these
networks work. After completing the
theoretical part, we will implement a small
RNN for a text generation task and see how
LSTM can be used for such tasks.

Appendix, Troubleshooting, in this chapter, the
author has mentioned detailed code of a few
chapters so that the readers don't struggle
while implementing the code.

What you need for
this book
This book is a practical walkthrough of the
machine learning technologies that require
implementation of algorithms by you to
understand the concepts in a more concrete
way. I have used Python as the language to
implement the algorithms in the form of code.
You need not be a Python expert to code
these algorithms; a simple understanding of
Python is enough to get started with the
implementation.

The code included in this book can run on
Python 2.7 and 3, but you will need the
NumPy and scikit-learn packages to
implement most of the code discussed in this
book.

For the implementation of ANNs, I have used
Keras and TensorFlow libraries; again, basic

a understanding of these libraries is enough
for the code implementation.

Who this book is for
This book is written for those readers who are
interested in understanding machine learning
concepts in a do-it-yourself style. As this
book implements almost all machine learning
algorithms it present from scratch, without
using any machine learning libraries, it will
give you a clear understanding of the working
of each algorithm.

This book is suitable for beginner,
intermediate, and skillful users. As I have
started each topic with very basic concepts,
beginners will not feel any discomfort in
understanding the concepts. Intermediates
will learn the code implementation of crucial
algorithms, such as random forests and
SVMs. Skillful readers will learn how simple
algorithms such as AdaBoost and gradient
boosting machine can become very powerful
and solve real-world problems.

This book is written as a journey from basic
to advanced concepts. Although you can pick
any chapter to start with, the code blocks
require reference to different chapters.

Conventions
In this book, you will find a number of text
styles that distinguish between different kinds
of information. Here are some examples of
these styles and an explanation of their
meaning.

Code words in text, database table names,
folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and
Twitter handles are shown as follows: "We
will use the iris dataset for this
implementation."

A block of code is set as follows:

Import All the required packages from sklearn

import numpy as np

from sklearn import model_selection

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

#Load data

iris = load_iris()

X = iris.data

Y = iris.target

When we wish to draw your attention to a
particular part of a code block, the relevant
lines or items are set in bold:

#We will define a method to calculate accuracy

of predicted output with known labels

def CalculateAccuracy(y_test,pred_label):

 nnz = np.shape(y_test)[0] -

np.count_nonzero(pred_label - y_test)

 acc = 100*nnz/float(np.shape(y_test)[0])

 return acc

New terms and important words are shown
in bold.

Warnings or important notes
appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always
welcome. Let us know what you think about
this book-what you liked or disliked. Reader
feedback is important for us as it helps us
develop titles that you will really get the most
out of.

To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in
and you are interested in either writing or
contributing to a book, see our author guide
at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt
book, we have a number of things to help you
to get the most from your purchase.

Downloading the
example code
You can download the example code files for
this book from your account at http://w
ww.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/s
upport and register to have the files emailed
directly to you. You can download the code
files by following these steps:

1. Log in or register to our website using
your email address and password.

2. Hover the mouse pointer on
the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.
4. Enter the name of the book in

the Search box.
5. Select the book for which you're looking

to download the code files.
6. Choose from the drop-down menu

where you purchased this book from.

http://www.packtpub.com
http://www.packtpub.com/support

7. Click on Code Download.

Once the file is downloaded, please make
sure that you unzip or extract the folder using
the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted
on GitHub at https://github.com/PacktPublishing/Ensem
ble-Machine-Learning. We also have other code
bundles from our rich catalog of books and
videos available
at https://github.com/PacktPublishing/. Check them
out!

https://github.com/PacktPublishing/Ensemble-Machine-Learning
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure
the accuracy of our content, mistakes do
happen. If you find a mistake in one of our
books-maybe a mistake in the text or the
code-we would be grateful if you could report
this to us. By doing so, you can save other
readers from frustration and help us improve
subsequent versions of this book. If you find
any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission
Form link, and entering the details of your
errata. Once your errata are verified, your
submission will be accepted and the errata
will be uploaded to our website or added to
any list of existing errata under the Errata
section of that title. To view the previously
submitted errata, go to https://www.packtpub.com/bo
oks/content/support and enter the name of the
book in the search field. The required

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

information will appear under the Errata
section.

Piracy
Piracy of copyrighted material on the internet
is an ongoing problem across all media. At
Packt, we take the protection of our copyright
and licenses very seriously. If you come
across any illegal copies of our works in any
form on the internet, please provide us with
the location address or website name
immediately so that we can pursue a remedy.
Please contact us at copyright@packtpub.com with
a link to the suspected pirated material. We
appreciate your help in protecting our authors
and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this
book, you can contact us
at questions@packtpub.com, and we will do our
best to address the problem.

Introduction to
Ensemble Learning
Ensemble learning is the divide-and-conquer
technique of the machine learning world. As
the name ensemble or grouping itself
suggests, it is an ensemble of multiple
models. There are many cases where a single
machine learning model lacks in
performance, then the perfect solution would
be using more than one model. This figure
shows the basic architecture of an ensemble
framework:

Figure 1.1: Ensemble learning architecture

In everyday life, we use ensemble learning
for our daily decision making, let's see an
example of this. Suppose you have to take
admission in a university for an ensemble
machine learning course. How will you
decide whether it is the right choice or not?
Here is the general approach:

Other students' reviews: Students may
provide information such as whether this
course is useful for improving skill sets,
information about the course curriculum,

the practical sessions, and so on. But as
the students are not fully aware of the
course's details (obviously, that's why
they are taking that course) and also
because they cannot suggest any other
competitive course, you cannot rely on
their suggestion solely. However, you
know that their suggestions helped you
in the past to choose previous courses.
Let's say they are correct 60% of the
time.
Study counselors: You can get
information regarding other competitive
courses. They also know which
universities have experts for the domain,
so they can help you out to choose one
course over other ML courses. Let's
assume that these counselors are correct
60% of the time.
Career counselors: Why do you want to
take this course? Of course, for a better
job, so a career counselor can tell you
about the current requirements related to
this skill set. They can tell you whether
this course will help you enhance your

career. Keep in mind that career
counselors are right most of the time,
say 40%.
Social media: Yes it helps! Here, you
can join many discussion forums, find
many suggestions, and pros and cons of
the course. You can get suggestions
from a large audience and they can
perform a very critical role in your
decision. This can show you in which
region of the country there is more
demand for a certain course, or where it
is not considered an important skill. It
may be correct, say, 40% of the time.
Placement officer: A placement officer
is a person who takes care of job
placements; so they better know which
specific companies need employees for
this domain. Also they will give you
assurance of getting a decent job after
completion of this course. And trust me,
70% of the time you will go with their
review, because they will help you in
getting a job!

So have you noted down all the suggestions
or reviews? I think yes. As you can see, no
one is able to give you a clearly correct
decision. Can we combine all the suggestions
to get to the correct decision? Let's take a
look at how you can make a decision on
whether you should go with this course or
not. Let's quickly analyze the scenario. As all
the experts are from an independent system,
we can get a very high accuracy rate as
follows:

1-60%*60%*40%*40%*70%

1-0.040

96%

Can you see what we have got by the
combined decision? I think it is more than
you think. Can we further improve it? Yes we
can; for that, we have to take suggestions
from more sources, such as course faculties, a
company's workers, and so on.

The preceding example is based on an
assumption that the suggestions from all the
sources are independent. Well, in a practical

scenario, this is not possible. If we are talking
about the same domain, more or less there
will be a correlation between the suggestions.
Suppose we choose six sources but all are
students of that course. Then we cannot reach
the correct decision with high confidence;
this is where the power of ensembles comes
into the picture, where you have multiple
predictions and you combine all of them to
get a high-confidence prediction. Let's enter
the world of ensembles.

What is ensemble
machine learning?
I think most of the part of this question is
answered in the introduction itself. Ensemble
learning is a very diversified field of machine
learning where we combine multiple learners
to increase the prediction power of our
system. It's an art rather than a science.
Combining the output of these learners is
known as ensemble machine learning.

This chapter is mainly focused on
introducing a few ensemble learning
techniques (which we will elaborate on in
later chapters). These techniques are
being used widely in machine learning
communities, so let's get into the details.

The purpose of
ensemble machine
learning
There are many reasons to go for ensembles,
as each model of the group is usually based
on algorithms, some of which are very simple
and less computation intensive, but some may
be quite complex and more computation
intensive. For any production environment,
accuracy and computation time are equally
important. A system with higher accuracy but
one that is unimplementable for real-time
applications is of no use. However, a simple
algorithm may lack in accuracy and may not
fit onto the data properly; in those cases, we
have to make a compromise between
accuracy and computation time. This
compromise can be minimized if we use
many weak learners to get a combined

confidence index out of them, which may
help us to implement such a system for real-
time applications with very high accuracy.

These are the reasons to use ensembles:

The dataset is too large or too small:
When a dataset is too large and so it
cannot be trained by a single model, we
can create a small subset of data to train
different models. At the end, we can
choose the average of all as the final
prediction. Similarly, when a dataset is
too small to train a single model, we can
use bootstrap methods to create random
subsamples of data to train the models.
Complex (nonlinear) data: Most of the
time, a real-world dataset is a nonlinear
dataset, where a single model cannot
define the class boundary clearly. This is
known as underfitting of the model. In
such cases, we can use more than one
model to train different subsets of the
data and average out the result at the end
to predict distinct boundaries.

High confidence: When we train
multiple classifiers on the training
dataset and get mostly correlated output,
it ensures a high prediction rate.
Consider a case of classification where
most of our classifiers predict the same
class for an instance; in such cases,
interprets ensemble system having high
confidence on its decision.

How to create
an ensemble system
We need to consider the following points to
create an ensemble system:

All models should have a difference of
population. We should divide our dataset
in such a way that subsets should have
less correlation between each other. This
will help create different classification
models, which can give independent
predictions.
Models should have different on the
hypotheses; that is, our expected
outcomes should be different for each
model. This will help us get a more
generalized ensemble system.
Each model should be dependent on
different algorithms. It may be a
combination of linear and nonlinear
algorithms, or a combination of

unsupervised and supervised algorithms.
This will help us visualize data from
different perspectives.

Quantification of
performance
The most important aspect of any statistical
model is quantification of its performance.
We can check the performance by calculating
the difference between input and output, that
is, error:

Equation 1.1

The preceding equation for error shows that
there are three main components: Bias,
Variance, and Irreducible Error. We cannot
do much about the last one, but by reducing
the Bias and Variance, we can improve our
classification results. How? Let's see.

Bias and variance
errors
Bias error: As you can see in
the preceding equation, bias is the average
difference between predicted and actual
values; if our system shows high bias error,
that means we are getting a low-performing
or under fitting model:

Figure 1. 2: Bias error

The preceding figure shows a representation
of bias error. A linear model is trained over
complex data and you can clearly see the
error between the prediction (red line) and
actual output (black dots). This shows that
our model is not fitting properly on the
dataset and thus underperforming. We can
avoid such cases by using a complex
(polynomial) model rather than a simple
linear model.

Variance error: This quantifies the
difference of the predicted value in the same
observation. This error shows overfitting of
our model. When we train a model that shows
high variance, it gives near 100% accuracy of
the training data; but when we present any
test case beyond our training data, this model
fails to predict the correct output. This
condition can occur in two cases: either if we
have less training data or if we train a
complex model on a simple data:

Figure 1.3: Variance error

As you can clearly see (Figure 1.3), our
model is well trained (red curve) over the
given training set but when we test an
instance (red dot) outside the training data,
we get a wrong prediction from the model.
The problem of overfitting can be solved by
increasing the number of training instances or
by choosing the correct classifier for
prediction.

We can summarize the preceding two errors
as follows:

Figure 1.4: Bias and variance errors (Credits: Scott
Fortmann)

In the preceding figure, consider the red dots
as real values and blue dots as predicted
outputs. This shows that when we observe a
high bias in our model, we start increasing its
complexity, which results in low bias. But if

we keep increasing the complexity (and our
dataset is small), we can end up with an
overfit model.

Management of the Bias and Variance error
is one way to keep a balance between Bias
and Variance errors, and ensemble methods
come into the picture to do a trade-off
analysis:

Figure 1.5: Trade-off analysis (Credit: Scott Fortmann)

 Methods to create
ensemble systems
There are three most common methods used
to create ensemble systems and these
methods have different optimized versions to
solve different problems. They are as follows:

Bagging
Boosting
Stacked generalization

Figure 1.6: Ensemble algorithms

The preceding three methods are the core
structure of this book. You will get an
introduction to these techniques in this
chapter. We will explain each of the
algorithms later in different chapters.

Bagging
Bagging, an acronym of bootstrap
aggregation, involves creating samples from
the dataset with replacement; that is, any
instance we have selected may repeat in the
same sample many times. Apparently, we are
increasing our training data by bootstrap,
each created and then used to create a
classifier model. The final prediction is the
average of all of the prediction models.

The most popular bagging algorithm,
frequently used by data scientists, is random
forest, which is based on the decision tree
algorithm. Another useful algorithm is K-
nearest neighbor (KNN) subspace bagging,
where the base learners are based on the k
nearest neighbor algorithm. We will discuss
these algorithms in detail in future.

We can understand bagging via the following
example. Suppose we want to fit a complex

dataset as shown in this figure:

Figure 1.7: How bagging works

As you can see in Figure 1.7, there are four
different subplots shown; subplot 1 (dataset)
shows the distribution of our training data,
where the x axis is for input and y axis is for
the predicted output.

Suppose we want to fit a simple model
(Model-1) over this dataset. You can clearly
see that our model is underperforming or
having a high bias error, but there are some
data points that are well predicted by our
model. Next, if we chose Model-2 to fit our
data, again our model faces underfitting. But
now it is well fitted for those data instances
that were not predicted correctly by Model-1.
Now if we take an average prediction from
both the models, we can compromise
somewhere and get an optimal model with
lower bias error than individual models.

The preceding example shows us the actual
power of ensembles. We can combine results
from several underperforming classifiers and
then can create an ensemble model that can
predict output with a very high confidence.

This figure shows such an ensemble system
used for bagging:

Figure 1.8: Bagging

As the preceding figure shows, bagging has
three steps:

Bootstrapping data

Aggregation or model fit
Combining the predictions from
different models

Bootstrapping is a process in which we
create multiple random samples out of our
training dataset; those samples can be created
by selecting random instances from data and
grouping them together as shown in the
following figure:

Figure 1.9 Bootstrapping samples

As you can see in the preceding figure, we
have some data instances (numbered balls)
We randomly choose some of the instances

(by replacing) and create a sample set. In
Sample 1, you can see instance one is
repeated two times. This means when we
select any new instance, we are logically
considering this as replacing the previous
instance, but actually we are keeping both of
them in our sub-sample. This is known as
sampling by replacement.

Aggregation or model fit is explained in the
following figure. Here, we select each
bootstrap sample and try to train a classifier
(such as decision trees) on each sample. We
update the status of our classifier on the basis
of the error between the actual value and
predicted value:

Figure 1.10 : Aggregation

The final step of bagging is combining the
predictions from different classifiers.
Averaging is the most common way to
combine the predictions. If we use the
decision tree as our base model, each model
gives us the probability for each class. We
choose the average probability across the
classifiers as the predicted outcome.

Let's implement a Python code for the
preceding steps. We will use iris dataset for
this implementation. We're gonna use some
Python libraries too, such as sklearn for
machine learning algorithms and numpy for
array-based operations. Let's jump to the
code:

Import All the required packages from sklearn

import numpy as np

from sklearn import model_selection

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_iris

#Load data

iris = load_iris()

X = iris.data

Y = iris.target

#Split data in training and testing set

X_fit, X_eval, y_fit, y_test= train_test_split(

X, Y, test_size=0.30, random_state=1)

#Create random sub sample to train multiple

models, This the step where number of Boot-

strap samples will be define, we will create

five samples.

seed = 7

kfold = model_selection.KFold(n_splits=5,

random_state=seed)

#Define a decision tree classifier: We will

going to use tree based classification with 100

trees in each model.

cart = DecisionTreeClassifier()

num_trees = 100

#Create classification model for bagging: Here

we will define that we want to create a bagging

classifier in which decision tree will be

trained.

model = BaggingClassifier(base_estimator=cart,

n_estimators=num_trees, random_state=seed)

#Train different models: Here we train our

defined models with different samples, there

will be 5 models gonna train for 5 samples.

results =

model_selection.cross_val_score(model, X_fit,

y_fit,cv=kfold)

#Print accuracy from all trained models.

for i in range(len(results)):

 print("Model: "+str(i)+" Accuracy is:

"+str(results[i]))

#Combine the result by averaging all the

results.

print("Mean Accuracy is: "+str(results.mean()))

The execution result of the preceding code is:

Model: 0 Accuracy is: 1.0

Model: 1 Accuracy is: 0.952380952381

Model: 2 Accuracy is: 1.0

Model: 3 Accuracy is: 0.904761904762

Model: 4 Accuracy is: 0.857142857143

Mean Accuracy is: 0.942857142857

As you can see, two out of five models are
showing 100% accuracy. Models 4 and 5 are
lacking in performance as they've got only
90.4% and 85.7 % accurate predictions. But
when we average the results of all, we get a
mean of 94.2% accurate predictions, which is
quite decent.

Boosting
Unity is the power. Yes, the same concept
can work in machine learning problems also.
How? Oh yes it can, and the approach is
known as boosting. It is a process in which
we train multiple weak classifiers and
combine their results to create a strong
classifier. In theory, boosting algorithms are
primarily used to prevent underfitting (high
bias) and, of course, overfitting (high
variance) of the classification model.

There are many boosting algorithms used by
the data science community, and in future
chapters, we will discuss some of them in
detail. These algorithms are AdaBoost,
XGBoost, gradient boosting machines, and so
on.

So how does boosting work? Well, you can
see in Figure 1.4. It starts with bootstrapping
of data, which is the same as bagging. Then

we start training the different models here.
These models are known as weak learners.
Now the first question that comes to mind is:
what is a weak learner?

Let's try to understand the concept of weak
learners. As these classifiers are not fully
responsible for the final prediction, they
contribute their small part to the final
decision. So, with respect to making the final
decision, these classifiers are known as
weak learners. For example, let's say we have
to make a prediction model for Peter, our
friend. He is studying in fifth standard. So we
want to know how he will get an A+ in his
term exams. For the answers, we ask the
same question to his friends and they give the
following answers:

Friend 1: Peter will get A+ if he reads
for two hours
Friend 2: Peter will get an A+ if he
watches less TV
Friend 3: He can get A+ if he take
classes regularly

Friend 4: He can only succeed if he gets
good tuition

What do you think? I think all of the
preceding answers will be required for good
term results, but none of his friends have a
complete answer. Why? The answer is quite
simple. They are not experts; they are not
mature enough. Each child has his/her own
opinion, but if you combine their answers,
you will get a complete answer. Give it a try.

So here, Peter's friends are our weak learners.
Each one can provide us partial information,
and then we can combine all of them and get
the conclusion. Weak learners work in the
same fashion; they use simple rules (in the
preceding case, the if statement) to predict
classes. Finally, we combine all of their
results to get our prediction.

Boosting is a supervised learning algorithm,
mainly a framework that consists of many
weak learners in cascade. It trains iteratively
on the training data and updates their weights

according to the difference between predicted
and actual values. The weight update depends
on the algorithm we used for the update. In
case the of boost by a majority algorithm, the
misclassified learner gets a weight gain and a
learner with true classification loses weight.
So the classifier gives less attention to the
true classification, which helps in faster
convergence of the classifier.

Figure 1.11: Boosting algorithm (cascade classifiers)

We can understand the boosting process via
the following steps:

1. First, create random samples from your
training data.

2. Now, train a classifier (Model 1) for this
sample and test the whole training data
(yes whole, not the sample).

3. Calculate the error for each instance
prediction. If the instance is classified
wrongly, increase the weight for that
instance and create another sample (by
replacement).

4. Repeat this procedure until you get high
accuracy from the system.

Let's write some Python code for a well-
known boosting algorithm, AdaBoost:

Import All the required packages from sklearn

from sklearn import model_selection

from sklearn.datasets import load_iris

from sklearn.ensemble import AdaBoostClassifier

Boosting Algorithm

from sklearn.tree import DecisionTreeClassifier

import numpy as np

#Load IRIS data

iris = load_iris()

X = iris.data

Y = iris.target

#Split data in training and testing set (80%

training data & 20 % testing)

X_fit, X_eval, y_fit, y_test=

model_selection.train_test_split(X, Y,

test_size=0.20, random_state=1)

#Define a decision tree classifier as WEAK

learner

cart = DecisionTreeClassifier()

num_trees = 25

#Create classification model for boosting

model = AdaBoostClassifier(base_estimator=cart,

n_estimators=num_trees, learning_rate = 0.1)

#Train Classification model

model.fit(X_fit, y_fit)

#Test trained model over test set

pred_label = model.predict(X_eval)

nnz = np.float(np.shape(y_test)[0] -

np.count_nonzero(pred_label - y_test))

acc = 100*nnz/np.shape(y_test)[0]

#Print accuracy of the model

print('accuracy is: '+str(acc))

Output of the preceding code snippet:

accuracy is: 96.6666666667

After training the preceding model, we get an
accuracy of 96.6% on our test data, which

shows that our classifier is well trained over
the training samples.

Stacking
In the previous two methods, we got an idea
of how multiple models of the same kind can
help us improve the accuracy of our
classification. What if we combine models of
two different kinds? Can it help us? The
answer is yes! In some cases, it is very
helpful to use different kinds of prediction
models to get higher prediction accuracy.
Well, the next question is: how?

As we have seen, a single decision tree in a
weak learner (boosting) or in bagging can
help us only to make partial predictions. To
reduce the bias error from our model, we
need to increase the number of classifiers in
our ensemble framework. In the same way,
for very complex datasets, a single solution
might not give us a higher prediction rate. For
such situations we need to combine different
kinds of classifiers, where the output of one
classifier can be the input of another. The

interesting part in the stacking process is that
the new model is trained to combine the
predictions from previously trained models
on the same dataset.

Combining these classifiers' results may be
done by simply averaging their predictions,
or we can use the weighted sum also. This
weighted sum can be calculated by using
linear or logistic regression algorithms. An
important thing to note down: we train the
initial level of classifiers separately and then
combine their results by training another
classifier. So the combining classifier does
not see the actual training set.

One more important thing is that the
submodels (initial classifier) should produce
uncorrelated results; that is, their results
should not match. So a prediction from
submodels will be like uncorrelated features
for the final classifier:

Figure 1.12: stacked generalization

As you can see in the preceding figure, we
are not creating different samples out of
training data to train classifiers. Instead, we
are training each classifier with the whole

training data; that is, each classifier is
independent of the other, which allows us to
use classifiers with different hypotheses as
well as algorithms. For example, we can use a
linear regression classifier and a random
forest for training and then we can combine
their predictions using a support vector
machine.

Let us understand stacking with the help of
the following example with Python
implementation.

We will choose the fisher iris data for this
example again. We will train a
KNN classifier, random forest, and naive
Bayes classifier for the first level of
classification. Then we will use the
predictions of these classifiers as feature
instances for a linear regression classifier and
try to see whether it helps us to increase our
prediction accuracy or not.

The following is the code listing for our
problem:

#Import IRIS dataset from sklearn

from sklearn import datasets

#Impoert Random forest Logistic regression,

naive bayes and knn classifier classes for

creating stacking.

from sklearn.ensemble import

RandomForestClassifier

from sklearn.linear_model import

LogisticRegression

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import

KNeighborsClassifier

#Import numpy for array based operations

import numpy as np

#Load the dataset

iris = datasets.load_iris()

#Extract data and target out of dataset

X, y = iris.data[:, 1:3], iris.target

#We will define a method to calculate accuracy

of predicted output with known labels

def CalculateAccuracy(y_test,pred_label):

 nnz = np.shape(y_test)[0] -

np.count_nonzero(pred_label - y_test)

 acc = 100*nnz/float(np.shape(y_test)[0])

 return acc

#Create a KNN classifier with 2 nearest

neighbors

clf1 = KNeighborsClassifier(n_neighbors=2)

#We will create a random forest classifier with

2 decision trees

clf2 = RandomForestClassifier(n_estimators =

2,random_state=1)

#Create a Naive bayes classifier

clf3 = GaussianNB()

#Finally create a logistic regression

classifier to combine prediction from above

classifiers.

lr = LogisticRegression()

#Now we will Train all first level classifiers

clf1.fit(X, y)

clf2.fit(X, y)

clf3.fit(X, y)

#Predict the labels for input data by all the

classifier; print their accuracy and store the

prediction into an array (f1,f2,f3)

f1 = clf1.predict(X)

acc1 = CalculateAccuracy(y, f1)

print("accuracy from KNN: "+str(acc1))

f2 = clf2.predict(X)

acc2 = CalculateAccuracy(y, f2)

print("accuracy from Random Forest: "+str(acc2)

)

f3 = clf3.predict(X)

acc3 = CalculateAccuracy(y, f3)

print("accuracy from Naive Bayes: "+str(acc3))

#Combine the predictions into a single array

and transpose the array to match input shape of

or classifier.

f = [f1,f2,f3]

f = np.transpose(f)

#Now train the classifier

lr.fit(f, y)

final = lr.predict(f)

#Calculate and print the accuracy of final

classifier

acc4 = CalculateAccuracy(y, final)

print("accuracy from Stacking: "+str(acc4))

Output of the preceding code snippet:

accuracy from KNN: 96.66666666666667

accuracy from Random Forest: 94.66666666666667

accuracy from Naive Bayes: 92.0

accuracy from Stacking: 97.33333333333333

We can see an improvement in the prediction
accuracy when we stack all the classifiers.
This example shows how we can use
predictions from other classifiers to train a
new classifier over them to get a high-
performance prediction framework. In the
following chapters, we will have detailed
discussions on all of the techniques we have
discussed here.

Summary
As this was our introductory chapter to the
world of ensembles, we saw how an
ensemble can be useful for getting high
accuracy from classifiers. We saw how to
quantify the performance of a classifier by
analyzing variance and bias errors. We
discussed the three important aspects of
ensemble algorithms, that is, bagging,
boosting, and stacking. We learned how to
do bagging using the same kind of classifiers,
in this case, decision trees. We also saw how
boosting works and how to use it. At the end,
we discussed what stacking is and how to
implement stacked generalization.

We learned to implement the
preceding classifier algorithms in Python for
practical analysis. You can choose different
datasets to try these codes. In future chapters,
we will see detailed discussions on all the
classifiers and algorithms we have used here,

of course with their Python implementation.

Decision Trees
We have seen a small application of decision
trees in the previous chapter, where we
created a bagging classifier with a decision
tree as the base learner. In this chapter, we
will discuss decision trees in depth and see
how to create decision trees, how they work,
and where we can use them to solve ML
problems.

Let's start with a simple example. Suppose
your fund advisory company wants to open
its new branch in a small city. You want to
select people who are willing to invest
through your company. How can you choose
them? One way to do this is to go brute force;
pick up your phone and dial some numbers.
Ask them whether they are willing to invest
money in the market. Some of them may not
be able to earn enough to invest, some may
not want to, and, more dramatically, some
may get irritated by your phone calls and may

file a complaint against your firm. So what
would you do?

Your problem can be solved by analyzing the
people's mindset in that city, and for that, you
have to reach out them and create a dataset by
choosing a sample of them; it will represent
the whole population. Suppose you have gone
through this step and now you have a dataset
with you that looks like this:

SN Name Sex Age Employment

1 Person 1 M 20 Unemployed

2 Person 2 M 25 Employed

3 Person 3 M 30 Employed

4 Person 4 F 30 Employed

5 Person 5 M 25 Employed

Table 2.1: Sample dataset

This table is just a representation of our big
dataset. Suppose that after analyzing this
table, we get some basic statistics regarding
their investment. The summary of the dataset
is:

Figure 2.1: decision tree;

This figure shows us a in-depth analysis of
our dataset; we can analyze it as follows:

From our total sample population, there
are three age groups. You can see that
only 15%of people from the Age group
of 20-25 years are interested. Only 5%

are from the Age group 50-70 years,
and 80% of the 25-50 years are persons
who invest in the market. So, for the
time being, we will concentrate on this
80% of the population only.
Only 30% of females from this
population invest whereas the male
investor population is 70%. So we will
move ahead with the male population.
As you can see, males who are
unmarried are less interested in investing
(30%); on the other hand 70% married
males are interested. So our criteria
further narrows down to them.
Next, we see that married persons who
have children are most likely to invest
(80%) and only 20% of the people
without children are investing.

What we have achieved from this analysis?
Yes, folks, we got our target people (married
young males with children) who are most
likely to invest through our firm. But before
getting excited, wait a second and think: what
we have done? Congratulations! We have just

created a decision tree from our dataset. Now,
whenever you enter a person’s details into
your tree, it can tell you whether he/she may
be your investor or not. But how? We will try
to find the answer to this question in the next
section.

How do decision
trees work?
The previous solution left us with questions
about how exactly decision trees work, how
we have selected the root node feature, and
how we can prove mathematically that the
root we are choosing will converge for a
solution. In this section, we will try to
understand how we can write an algorithm to
create decision trees from scratch.

First, we will try to understand the basic
terms used frequently in tree-based
algorithms:

Root is the first node of the tree. Every
tree must have a root node. It is actually
the origin of the tree; in any kind of tree,
there will be only one root node.
Edge is the connection between two
nodes. A tree with N number of nodes

will have a maximum of N-1 edges.
Parent is a node with branches toward
other nodes.
Child is a descendant of any node. In a
tree, any parent node can have any
number of child nodes. All nodes except
the root node are known as child nodes.
Siblings are nodes that are children of
the same nodes; in other words siblings
are children of the same parent node.
Leaf is a node that does not have any
child node; in our case, it will be the
node where we find predictions on input
data.
Degree of a node is the total number of
children of that node.
Level of a node is each step from root
(top) to leaf (bottom); this count starts
from the root node, which is always at
level 0.
Height is the longest path from a leaf to
the root node; that is, the height of the
leaf node is zero and height of the root
node is the height of the tree.
Depth of a tree is the number of edges

from root to leaf on the longest path.
Sub tree can be assumed like this: any
parent in the tree is a root of a sub tree.
Each child from a node forms a sub tree
recursively.

We will understand and implement one of the
most used algorithms to create a decision
tree, that is, the Iterative Dichotomiser 3
(ID3) algorithm. In future chapters, we will
see Classification And Regression Trees
(CART). ID3 is the classical decision tree
implementation proposed by Ross Quinlan,
and CART is proposed by Leo Breiman et. al.
Both the algorithms are widely used in the
data science community.

ID3 algorithm for
decision tree building
The ID3 algorithm is used for classification
of categorical datasets, that is, datasets that
have non-numerical values, such as the
sample dataset we discussed in the example
in the introduction. We will create a decision
tree on the same data with some
modifications to understand that it's working.

SN Name Salary Sex

1 Person 1 Low

2 Person 2 Med

3 Person 3 Med

4 Person 4 Med

5 Person 5 Med

6 Person 6 High

7 Person 7 Low

8 Person 8 High

9 Person 9 Med

10 Person 10 Low

Table 2.2: Training dataset

We have selected some attributes from our
investor dataset and converted all numerical
data fields into categorical data, such as
salary divided into three category: Low, Med,
and High. Now we will implement the ID3
algorithm step wise. And, as you know, you
can learn an algorithm much faster if you
write a code for it, so let's also implement a
Python code for our decision tree.

The first step is to feed data into a suitable
data structure from where we can easily
perform the required mathematical
calculations for storing our data in a tabular
form. We are going to use the pandas library,
which has a specific a data structure known
as DataFrame; let's write it out:

#Lets create a python dictionary to store our

attributes and their respected values as

follows

dataset = {'Name':['Person 1','Person

2','Person 3','Person 4','Person 5','Person

6','Person 7','Person 8','Person 9','Person

10'],

 'Salary':

['Low','Med','Med','Med','Med','High','Low','High','Med','Low'],

 'Sex':

['Male','Male','Male','Female','Male','Female','Female','Male','Female','Male'],

 'Marital':

['Unmarried','Unmarried','Married','Married','Married','Unmarried','Unmarried','Unmarried','Unmarried','Married'],

 'Class':

['No','No','Yes','No','Yes','Yes','No','Yes','Yes','Yes']}

#Now we will create a Data frame out of the

preceding dataset(dictionary)

import pandas as pd

df = pd.DataFrame(dataset)

print(df)

When we execute the preceding code block,
the DataFrame creates a tabular representation of
our dictionary dataset, where we can
visualize it in much better way, as follows:

 Salary Sex Marital Class

0 Low Male Unmarried No

1 Med Male Unmarried No

2 Med Male Married Yes

3 Med Female Married No

4 Med Male Married Yes

5 High Female Unmarried Yes

6 Low Female Unmarried No

7 High Male Unmarried Yes

8 Med Female Unmarried Yes

9 Low Male Married Yes

Root node
First of all, to create a tree, we need to define
its root node. For that, we have to select an
attribute (feature) that has the most
informative data. This can lead us to a true
classification of the instance. For this, we will
require three basic calculations, that is,
entropy of classes, information gain, and
entropy of attributes.

Remember the definition of entropy from
your high-school chemistry? It is the degree
of randomness or uncertainty, in our case the
degree of variance, or in simple terms the
class variance. So our main target is to select
such nodes by which we can reduce the
entropy or attribute variance. In other words,
entropy is also a measure of impurity; a
dataset is called a pure dataset if all its
instances have the same class attributes (in
our case, if all persons are investors, our
dataset will be a pure dataset). For a pure

dataset, entropy will be zero or near zero.
Information gain is also known as mutual
information; it is nothing but a measure to
select the most informative attribute that can
help us to reduce entropy. We can calculate
all three of them for our problem as follows:

Entropy:

 (2.1)

where Fc1 and Fc2 are the fractions of
different classes (for example, Yes and
No) in class attributes.

The entropy of a dataset for different attribute
values (for example, for Low, Med, and High):

 (2.2)

where Fc1i and Fc2i are the fractions of
Yes and No for the selected attribute.

Total entropy of the attribute:

Information gain for the attribute:

 (2.4)

where E is the entropy of the class and Ea is
the entropy of the attribute.

Let's write some Python definitions to
calculate the class entropy using (2.1):

import numpy as np

def getClassEntropy(classAttributes):

 #Get distinct classes and how many time

they occure

 _,counts =

np.unique(classAttributes,return_counts=True)

 denom = len(classAttributes)

 entropy = 0 #Initialize entropy variable

 #Run a loop to calculate entropy of dataset

 for count in counts:

 fraction = count/denom

 entropy+= -fraction*np.log2(fraction)

#Equation 2.1

 return entropy

The attribute with maximum information gain
as per (2.3) will be our root node. Now we
will calculate the root node for our tree in the
following way:

First, we have to calculate the entropy of our
classes using (2.1), so the parameters we
need are:

Number of Yes in the dataset: 6
Number of No in the dataset: 4
Total number of instances: 10

So, by (2.1), the entropy of our class attribute
is:

E = -0.6*log2(0.6) -
0.4*log2(0.4)
E = 0.9709

Next we will have to calculate the entropy of
individual attributes; our first attribute is the
salary of participants. Let's prepare a small
tabular representation for the attribute.

Salary
The following table is a subtable extracted
out of Table 2.2 for analyzing the salary
attribute, as salary has three types of values:
Low, Med, and High. You can see in Table
2.2 that we've got three persons with a low-
salary attribute. One of them is an investor
and the other two are not investing. Similarly
3 out 5 in the medium-salary group are
investors and 2 are not. Whereas for the high-
salary group, 2 out of 2 are investors:

Values Y N

Low 1 2 0.9234

Med 3 2 0.9709

High 2 0 0

Esalary = 0.7624

IGsalary = 0.2085

Table 2.3: Summary of the Salary attribute

Now let's put in the code for getting a
summary table as before. We will call it a
histogram table; it shows us the class
distribution. The Python code for it will be:

def getHistTable(df,attribute):

 #This function create a subtable for the

given attribute

 #Get values for the attribute

 value = df[attribute]

 #Extract class

 classes = df['Class']

 #Get distinct classes

 classunique = df['Class'].unique()

 #Get distinct values from attribute for

example, Low, High and Med for Salary

 valunique = df[attribute].unique()

 #Create an empty table to store attribute

value and their respective class occurance

 temp =

np.zeros((len(classunique),len(valunique)),dtype='uint8')

 histTable =

pd.DataFrame(temp,index=classunique,columns=valunique)

 #Calculate class occurance for each value

for Med salary how many time class attribute is

Yes

 for i in range(len(classes)):

 histTable[value[i]][classes[i]]+= 1

 return histTable

When we call the preceding function, the
input argument will be the data frame and
attribute value; the calling will look like:

histTable = getHistTable(df,"Salary")

print(histTable)

Following are the results of the execution of
the previous lines of code:

Low Med High

No 2 2 0

Yes 1 3 2

Now we will calculate the entropy of
individual attributes with the use of (2.2); for
the low-salary group, the equation will look
like this:

For the medium-salary group:

Similarly, we will find the information gain
for the high-salary group:

Once we have got the individual information
gain for low, med, and high salary, we can
use it to calculate the entropy of the attribute
using (2.3):

Once we get the entropy of the salary
attribute, we use (2.3) to calculate its
information gain, which will be:

Similarly we can calculate the information
gains for Sex and Marital status.

Now let's add a getInformationGain function to
our code to get the information gain of these
attributes:

def getInformationGain(histTable,classEntropy):

 #Initialize a variable for storing

probability of Classes

 fraction = 0

 #Calculate total number of instances

 denom = np.sum(np.sum(histTable))

 #Initialize variable for storing total

entropies of attrribute values

 EntropyAtt = 0

 #Now we will run a loop to access each

attribute and its information gain

 for key in histTable.keys():

 #Extract Attribute

 attribute = histTable[key]

 entropy = 0

 #Initialize variable for entropy

calculation

 coeff = 0

 #Initialize variable to store

coefficient

 #Find out sum of class attributes(in our

case Yes and No)

 denom2 = np.sum(attribute)

 #Run a loop to get entropy of distinct

values of attribute

 for value in attribute:

 #Calculate coeff

 coeff+= value/denom

 #Calculate probability of the

attribute value

 fraction = value/denom2

 #Calculate Entropy

 eps = np.finfo(float).eps

 entropy+= -

fraction*np.log2(fraction+eps)

 EntropyAtt+= coeff*entropy

 #Calculate Information Gain using class

entropy

 InfGain = classEntropy - EntropyAtt

 return InfGain,EntropyAtt

The preceding function will take histTable as
an input argument along with the classEntropy
of the dataset to calculate the information
gain. Let's run the preceding script for the hist
table of the Salary attribute and see what we

get:

Ec = getClassEntropy(df["Class"])

histTable = getHistTable(df,"Salary")

Ig,Ea = getInformationGain(histTable,Ec)

print("Information Gain for %s: %.2f and

Entropy: %.2f"%("Salary",Ig,Ea))

After execution we will get:

Information Gain for Salary: 0.20 and Entropy:

0.76

The Sex attribute
The following table shows a summary of the
calculations. In this case, you can see that 4
out of 6 males are investors while 2 are not
investing anywhere. There are 50% female
investors:

Values Y N Attribute entropy

M 4 2 0.9234

F 2 2 1

Esex = 0.9540

IGsex = 0.0169

Table 2.4: Summary of the Sex attribute

Let's see the information gain and entropy for
the Sex attribute:

Ec = getClassEntropy(df["Class"])

histTable = getHistTable(df,"Sex")

Ig,Ea = getInformationGain(histTable,Ec)

print("Information Gain for %s: %.2f and

Entropy: %.2f"%("Salary",Ig,Ea))

After execution we will get:

 Information Gain for Sex: 0.02 and Entropy:

0.95

Marital status
The following table shows the summary of
the calculations; here, 3 out of 4 married
persons are investing somewhere and 50% of
unmarried people are investing:

Values Y N

M 3 1

UM 3 3

EMarital = 0.9244

IGMarital = 0.0465

Table 2.5: Summary of the Marital status attribute

Let's see the information gain and entropy
calculated by our implemented function;

Ec = getClassEntropy(df["Class"])

histTable = getHistTable(df,"Marital")

Ig,Ea = getInformationGain(histTable,Ec)

print("Information Gain for %s: %.2f and

Entropy: %.2f"%("Salary",Ig,Ea))

Information gain and Entropy for Marital
attribute will be:

 Information Gain for Marital: 0.05 and

Entropy: 0.92

After performing the preceding calculations,
we can summarize the information gain for
all the attributes in this table:

Attribute Information gain

Salary 0.2085

Sex 0.0169

Marital 0.0465

Table 2.6: A summary of the information gain calculated

Now, as we have all the building blocks
needed to get winnerNode using InformationGain,
we can write a method that directly gives us
the winnerNode whenever we pass a data frame
to it. Let's write it and try to find our winner
attribute:

def getNode(df):

 #This function is written for getting

winner attribute to assign node

 #Get Classes

 classAttributes = df['Class']

 #Create empty list to store Information

gain for respected attributes

 InformationGain = []

 AttributeName = []

 #Extract each attribute

 for attribute in df.keys():

 if attribute is not 'Class':

 #Get class occurance for each

attribute value

 subtable = getHistTable(df,attribute)

 #Get class entropy of the data

 Ec = getClassEntropy(classAttributes)

 #Calculate Information Gain for each

attribute

 InfoGain,EntropyAtt =

getInformationGain(subtable, Ec)

 #Append the value into the list

 InformationGain.append(InfoGain)

 AttributeName.append(attribute)

 print("Information Gain for %s: %.2f

and Entropy: %.2f"%

(attribute,InfoGain,EntropyAtt))

 #Find out attribute with maximum

information gain

 indx = np.argmax(InformationGain)

 winnerNode = AttributeName[indx]

 print("\nWinner attrbute is: %s"%

(winnerNode))

 return winnerNode

Let's call the preceding function for our data
frame and try to find out the root node for our
tree:

node = getNode(df)

Following is the output for the winner
attribute;

Information Gain for Salary: 0.21 and Entropy:

0.76

Information Gain for Sex: 0.02 and Entropy:

0.95

Information Gain for Marital: 0.05 and Entropy:

0.92

Winner attribute is: Salary

As you can see, the preceding entropy of the
Salary attribute is much lower than that of Sex

and Marital status, and its information gain is
quite higher than that of the other two, which
clearly indicates our winner attribute.

Branches: It is clear from Table 2.6 that the
Salary attribute has the highest information
gain and will be the root node for our tree.
Once we have got our winner as the root
node, the next thing is to decide its edges or
branches. So the branches of a decision tree
are nothing but attribute values of the parent
node (in the current case, root). As the Salary
attribute has become the root node here, its
attribute values of Low, Med, and High will
be the branches of this node. So our tree will
look like this:

Figure 2.2: Root node and its branches

You can see an interesting thing in Figure

2.2. That High branch has already got its
decision as Yes. How? Well, if you see the
data table, you will understand that the person
with the high Salary is a investor no matter
what his/her Marital status or sex is. It shows
that we are heading towards the right status:

SN Name Salary Sex

6 Person 6 High F

8 Person 8 High M

Table 2.7: A condition of a pure subset

The preceding table shows a case of a pure
subset. Wait! What? Pure subset? Yes, a
subset of our dataset that has all class values
of the same class is known as a pure subset.
Well, our whole task here is to find nodes that
create pure subsets, as you saw before.

Let's create subtable in our code too and let's
try to find whether it is a pure subset (with
zero entropy) or not:

def getSubtable(df,node,atValues):

 #This function is written to get subtable

for given attribute values(such as table for

those persons

 #whose salary is Medium)

 subtable = []

 #run a loop through the dataset and create

subtable

 for i in range(len(df[node])):

 if df[node][i]==atValues:

 row = df.loc[i,df.keys()]

 subtable.append(row)

 for c in range(len(df.keys())):

 if df.keys()[c]==node:

 break;

 #Create a new dataframe

 subtable =

pd.DataFrame(subtable,index=range(len(subtable)))

 return subtable

Let's execute the preceding code block for the
High attribute value for Salary:

subtable = getSubtable(df,"Salary","High")

print(subtable)

After executing previous lines we will get the
following information:

 Salary Sex Marital Class

0 High Female Unmarried Yes

1 High Male Unmarried Yes

So what's next from here? Now we want to
know which node should come under the
Low and Med salary groups in the same way
as we have done for the root node.

Parent node

For the calculation of the next node under the
Low salary branch, we will create a subset out
of our main data, which will contain values
regarding the Low salary attribute only:

SN Name Salary Sex

1 Person 1 Low M

2 Person 7 Low F

3 Person 10 Low M

Table 2.8: A subdataset for Low salary values

For the preceding data, we need to calculate

the information gain for Sex and Marital status,
and their winner will become the parent node
under this branch.

As you can observe, we repeat all of the
procedure again to find out the next node that
will come underneath the low salary attribute,
and then we again check whether we are have
a pure subset or not. Then we repeat our quest
for the next node until we reach the last
attribute. Oh god! What can we do to reduce
our workload? Of course, we have sufficient
codes to get nodes from different subsets, so
we can use them recursively to build the
whole tree out of our dataset. Let's see how to
write the code for that.

So now we have a code for creating subtables
out of our dataset for a specific node
(attribute) and its branches. If we put these
methods all together, we can actually build a
tree! Yup, we can. Let's add a method to our
code to build a tree using the preceding
methods:

def buildTree(df,tree=None):

 #Here we build our decision tree

 #Get attribute with maximum information gain

 node = getNode(df)

 #Get distinct value of that attribute e.g

Salary is node and Low,Med and High are values

 attValue = np.unique(df[node])

 #Create an empty dictionary to create tree

 if tree is None:

 tree={}

 tree[node] = {}

 #Loop below is written for building tree

using recursion of the function,We will create

subtable of

 #each attribute value and try to find

whether it have a pure subset or not, if it is

a pure subset we

 #will stop tree growing for that node. if it

is not a pure set then we will. again call the

same

 #function.

 for value in attValue:

 print("Value: %s"%value)

 subtable = getSubtable(df,node,value)

#Get subtable for the attribute and value

 clValue,counts =

np.unique(subtable['Class'],return_counts=True)

 if len(counts)==1:

#Checking purity of subset

 print("Class: %s\n"%clValue)

 tree[node][value] = clValue

 else:

 tree[node][value] = buildTree(subtable)

#Recursion of the function

 return tree

As you can see, we are using a dictionary

data structure to create our tree, which gives
us the advantage of accessing values using
keys. So if we want to know about the
branches of any node, we can simply find out
using the node value.

Now we will use the preceding function to go
through the next steps, and see how theory
and practice get a strong bond together:

tree = buildTree(df)

In the following discussion, I will use the
intermediate results from the preceding
execution, which will explain to you both the
working of the algorithm and the code. We
have reached up to:

Value: Low

 Salary Sex Marital Class

0 Low Male Unmarried No

1 Low Female Unmarried No

2 Low Male Married Yes

Choosing between
the Sex and Marital
attributes for the low
salary group
As you can see in Table 2.8, there are two
males in this salary group. One of them is an
investor. There is only one female and she is
not investing anywhere. Table 2.9 shows a
summary of the attribute. We will first
calculate the entropy for the subset
from (2.1), which is 0.9234:

Values Y

M 1

F 0

Esex = 0.6666

IGsex = 0.2568

Table 2.9: Statistics for the Sex attribute

Next we will calculate individual information
gains for the values Male and Female to calculate
the entropy of the attribute using (2.2) and
(2.3); the value of entropy will be 0.6666 and
Information gain will be 0.2568.

Similarly we will calculate these values for
Marital status as follows.

Again in the reference of Table 2.8, there are
one married and two unmarried persons in
this salary group; only one of them an is
investor and that is the married one. We can
summarize our values in the form of the
following table:

Values Y N
Information
gain

M 1 0 0

UM 0 2 0

Emarital = 0

IGmarital =
0.9234

Table 2.10: Statistics for the Marital attribute

After calculating information gain for both
the attributes, we will get the following
values out of it:

Attribute

Sex

Marital

Table 2.11: A summary of information gain calculation

Information Gain for Salary: 0.00 and Entropy:

0.92

Information Gain for Sex: 0.25 and Entropy:

0.67

Information Gain for Marital: 0.92 and Entropy:

-0.00

You see our winner is Marital status, and it
will be the next node of our tree under the
Low salary branch. So, now our tree will look
like this:

Figure 2.3 Marital Node

Following condition will happen when we
will choose Marital status as the node, it will
have two branches as Married and Unmarried,
which will hold the class values:

Winner attrbute is: Marital

Value: Married

 Salary Sex Marital Class

0 Low Male Married Yes

Class: ['Yes']

Value: Unmarried

 Salary Sex Marital Class

0 Low Male Unmarried No

1 Low Female Unmarried No

Class: ['No']

As you can see in our tree, Marital status will
have two branches (Married and Unmarried),
creating a pure subset. It directly shows that
if a low-salaried person is married, then he
will be an investor, whereas there will be a
lesser probability of investing when he/she is
unmarried.

Next, we will inspect the Med salary group for
its next node. Again, we have two options for
that: Sex and Marital status. Let's first create a

subset for the Med salary group:

SN Name Salary Sex

1 Person 2 Med M

2 Person 3 Med M

3 Person 4 Med F

4 Person 5 Med M

5 Person 9 Med F

Table 2.12: Subset for the Med salary group

Choosing between
the Sex and Marital
attributes for the
Med salary group
Table 2.12 shows us that there are three
males and two females belonging to the
medium salary structure, and three out of
them are investors. Let's calculate the entropy
and the information gain for this attribute:

Values Y N Attribute entropy

M 2 1 0.9234

F 1 1 1

Esex = 0.9693

IGsex = 0.0169

Table 2.13: A summary of the Sex attribute for the Med
salary group

The entropy of the subset (Table 2.12) is
0.9709, the entropy of the attribute is 0.9693,
and information gain is 0.0169.

Marital status
Table 2.12 shows us that there are three
married and two unmarried persons in the
medium-salaried subset. Two married
persons are investors while only one
unmarried investor is present. The summary
of the calculation is:

Values Y

M 2

UM 1

Emarital = 0.9693

IGmarital = 0.0169

Table 2.14: A Summary of the Sex attribute for the Med
salary group

Following is a summary table for the
information gains of both the attributes:

Attribute IG

Sex 0.0169

Marital 0.0169

Table 2.15: Information gain summary

Wait!!! What! Both the attributes have the
same information gain! How is that possible?
Yes, it is possible. If you look closely at
Table 2.13 and Table 2.14, you will get to
know that there are exactly the same number
of investors for each of their respective
attribute values. So what do we do now?
Well, there's nothing to worry about. These

same information gains indicate to us that we
may choose any one of them as our next
parent node. We will choose the Sex attribute
as the next node (you can try Marital also; it
will not affect our final outcome).

Let's see how:

Information Gain for Salary: 0.00 and Entropy:

0.97

Information Gain for Sex: 0.02 and Entropy:

0.95

Information Gain for Marital: 0.02 and Entropy:

0.95

Winner attribute is: Sex

Figure 2.4: Adding the Sex attribute as a node to the Med
salary group

The preceding figure shows that there will be

two branches out of the Sex attribute, that is,
Male and Female. Now we need to choose
the next attribute under these branches; let's
do it. But wait!!! Do we really need to
calculate anything from here? We are left
with Marital status only, so, of course, it will
be our next node, and this node (Marital
status) will be common in both of the
branches (Male and Female). Why? let's
analyze the table for Male and Female values:

Value: Male

 Salary Sex Marital Class

0 Med Male Unmarried No

1 Med Male Married Yes

2 Med Male Married Yes

Information Gain for Salary: 0.00 and Entropy:

0.92

Information Gain for Sex: 0.00 and Entropy:

0.92

Information Gain for Marital: 0.92 and Entropy:

-0.00

Winner attribute is: Marital

Value: Married

 Salary Sex Marital Class

0 Med Male Married Yes

1 Med Male Married Yes

Class: ['Yes']

Value: Unmarried

 Salary Sex Marital Class

0 Med Male Unmarried No

Class: ['No']

Sex Marital status Investor

M UM No

M M Yes

M M Yes

Table 2.16: Investor status of Male investores

For Female branch output will be:

Winner attribute is: Sex

Value: Female

 Salary Sex Marital Class

0 Med Female Married No

1 Med Female Unmarried Yes

Information Gain for Salary: 0.00 and Entropy:

1.00

Information Gain for Sex: 0.00 and Entropy:

1.00

Information Gain for Marital: 1.00 and Entropy:

-0.00

For Marital node there will be two branches;
of course; Married and Unmarried!!

Winner attribute is: Marital

Value: Married

 Salary Sex Marital Class

0 Med Female Married No

Class: ['No']

Value: Unmarried

 Salary Sex Marital Class

0 Med Female Unmarried Yes

Class: ['Yes']

Sex Marital status Investor

F UM <p>Yes

F M No

Table 2.17: Investor status of female investors

If you will look at Table 2.16, you will notice
that we've got three male persons from the
medium salary group; two married males are

investors and the one unmarried male is not
likely to be our investor. Similarly, Table
2.17 shows that if a female is married, she is
not interested in investing. Let's create a tree
out of the preceding conclusion and see
whether we are getting a convergence or not:

Figure 2.5: Final decision tree

Congratulations!!! We have got our first
decision tree; now we can predict whether a
person will invest through our firm or not.
Let's look at the tree model generated by our
code:

{'Salary': {'High': array(['Yes']),

 'Low': {'Marital': {'Married':

['Yes'],

 'Unmarried':

['No']}},

 'Med': {'Sex': {'Female':

{'Marital': {'Married': ['No'],

'Unmarried':['Yes']}},

 'Male': {'Marital':

{'Married': ['Yes'],

'Unmarried':['No']}}}}}}

You can see we've got exactly what we want.
The root node is the first key of our
dictionary, whose values are High, Low, and Med;
the preceding structure is known as a
cascaded dictionary.

Now, once we have created our model, we
store it on disk, and then it can be used to find
our investor. Let's see how to do that:

def predict(inst,tree):

 #This function will predict an input

instance's class using given tree

 #We will use recursion to traverse through

the tree same as we have done in case

 #of tree building

 for nodes in tree.keys():

 value = inst[nodes]

 tree = tree[nodes][value]

 prediction = 0

 if type(tree) is dict:

 prediction = predict(inst, tree)

 else:

 prediction = tree

 break;

 return prediction

Whenever we execute the preceding method,
it will find the root node in our instance and
then it will start traversing key by key into
the tree recursively as we did at the time of
building our tree.

Let's try to predict an instance from our input
data:

inst = df.ix[2]

print(inst)

Instance will look like;

 Name Salary Sex Marital Class

2 Person 2 Med Male Married Yes

As you can see, we have selected instance
number 2. Before feeding this instance to our
model, we have to apply a preprocessing step
to our data to remove the Name and Class
attributes from it; we can write a small
method to do this:

def preProcess(dataset):

 #Create a dataframe out of our dataset with

attribute names

 df = pd.DataFrame(dataset,columns=

['Name','Salary','Sex','Marital','Class'])

 #Remove name attribute as it is not

required for the calculations

 df.pop('Name')

 #Make sure last attribute of our dataset

must be Class attribute

 cols = list(df)

 cols.insert(len(cols),

cols.pop(cols.index('Class')))

 df = df.ix[:,cols]

 return df

Whenever we feed our instance to the
preceding method while creating a model or
testing, the preceding method will ensure that
there is no Name attribute in the instance and
the Class attribute is always in the last column
of the dataset.

Now let's test the instance:

#Remove its class attribute

inst.pop('Class')

#Get prediction

prediction = predict(inst, tree)

print("Prediction: %s"%prediction[0])

After execution we will get:

Prediction: Yes

As you can see, our prediction is correct as
instance 2 has an investor.

Case study – car
evaluation problem
So we have successfully built a decision tree,
but what next? Is it useful in practical
scenarios? Will it perform for a real-world
dataset? We have put in so much effort to
write and understand this code. Now is our
exam time. Let's pick up a practical-world
dataset and apply that code to build a tree to
see whether it is useful stuff or not.

We will use the car evaluation dataset, which
is available at https://archive.ics.uci.edu/ml/datasets/Car
+Evaluation. This dataset was created by Marko
Bohanec in June 1997. It was specifically
developed for testing constructive induction
and structure discovery methods, and it can
also be used for multi-attribute decision
making (which is what we are actually
doing). You can find further information on
the dataset web page; we will just discuss the

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

information that is significant to our purpose.

This is a multi-attribute dataset for evaluating
a car: whether it is in an acceptable,
unacceptable, good, or very good condition.
There are six parameters (attributes) that are
helpful to determine the aforementioned
conditions.

The following is a little summary of the
dataset:

The attributes in the dataset are:

The model evaluates

 cars according to the following concept

structure:

 CAR car acceptability

 . PRICE overall price

 . . buying buying price

 . . maint price of the

maintenance

 . TECH technical

characteristics

 . . COMFORT comfort

 . . . doors number of doors

 . . . persons capacity in terms

of persons to carry

 . . . lug_boot the size of luggage

boot

 . . safety estimated safety of

the car

The number of samples in the dataset:

Number of Instances: 1728

 (instances completely cover the attribute

space)

The attribute values are:

Number of Attributes: 6

Attribute Values:

 buying v-high, high, med, low

 maint v-high, high, med, low

 doors 2, 3, 4, 5-more

 persons 2, 4, more

 lug_boot small, med, big

 safety low, med, high

Following is the distribution of the classes:

Class Distribution (number of instances per

class)

 class N N[%]

 unacc 1210 (70.023 %)

 acc 384 (22.222 %)

 good 69 (3.993 %)

 v-good 65 (3.762 %)

Before moving on to creating our tree, we
will add two more functions to our code; one
of them will help us create data for training
and testing from the available dataset, and the

other one will be used to evaluate the model:

def split_data(df,percentage):

 #First get the split index using percentage

of data required for training

 split_indx =

np.int32(np.floor(percentage*len(df.index)))

 #We will shuffle the rows of data to mix

out its well

 df =

df.sample(frac=1).reset_index(drop=True)

 #split training data for creating tree

 train_data = df[:split_indx]

 temp = df[split_indx:len(df.index)]

 temp = temp.as_matrix()

 test_data =

pd.DataFrame(temp,index=range(len(temp)),columns=

[key for key in df.keys()])

 return train_data,test_data

The preceding code block will divide our data
into training and test sets. We will use the
training set to build the tree and the test set to
evaluate our model. Let's start with building
the tree:

cardata = pd.read_csv("Path where dataset

stored on the disk")

#Convert data into matrix form

mat = cardata.as_matrix()

#Add column attributes to the data

df = pd.DataFrame(mat,columns=

['buying','maint','doors','persons','lug_boot','safety','Class'])

#Create data split with the given percentage

trainData,testData = split_data(df, 0.991)

#Store training and test data into csv files

for future usage

trainData.to_csv(trainDataPath,columns=

['buying','maint','doors','persons','lug_boot','safety','Class'])

testData.to_csv(testDataPath,columns=

['buying','maint','doors','persons','lug_boot','safety','Class'])

#Lets Create the tree

tree = buildTree(trainData)

pprint.pprint(tree)

{'safety': {'high': {'persons': {'2': 'unacc',

 '4':

{'buying': {'high': {'maint': {'high': 'acc',

'low': 'acc',

'med': 'acc',

'vhigh': 'unacc'}},....

#Store the model on the disk as a json file

import json

with open(path2save,'w') as f:

 json.dump(tree,f)

The preceding block shows a very small part
of our trained tree model.

Now we will test the model using our test
data; we will add a small code for getting the
predicted output for multiple instances:

def BatchTest(instances,tree):

 prediction = []

 instances.pop("Class")

 for i in range(len(instances.index)):

 inst = instances.ix[i]

 pred = predict(inst, tree)

 prediction.append(pred)

 return prediction

After getting the predictions for our test data,
we will evaluate the accuracy of the model
via this function:

def getAccuracy(testClass,predictedClass):

 match = 0

 for i in range(len(testClass)):

 if testClass[i]==predictedClass[i]:

 match+=1

 accuracy = 100*match/len(testClass)

 return accuracy,match

Now, as we have the model and evaluation
code, we can test our model against the test
data we have created, as follows:

#Lets load the model we have stored

with open(path2save) as f:

 model = json.load(f)

#Extract actual class values out of test data

actualClass = testData['Class']

#Get predictions for each instance in the

training data

predictions = BatchTest(testData, model)

accuracy,match = getAccuracy(actualClass,

predictions)

print("Accuracy of the model is: %.2f and

matched results are %i out of %i"%

(accuracy,match,len(actualClass)))

Accuracy of the model is: 93.75 and matched

results are 15 out of 16

As you can see, we have predicted 15 out of 16
instances correctly from our simple decision
tree!!

Summary
We learned how to create a decision tree out
of our dataset, code it, and then use this
algorithm for the practical usage. There are
innumerable applications of decision trees,
from weather condition prediction to spam
alerts from e-mail data. Now, what next?

We worked with the categorical dataset in
this chapter; in other words, the attributes of
the dataset are mostly non-numeric or
discrete values, and most real-world
applications involve numerical datasets in
which attributes may have fractional values.
Whenever we have to deal with a numerical
dataset, we cannot rely on the preceding
algorithm for such a dataset. We have to
work with some more advanced algorithms.
In the next chapter, we will learn to create a
decision tree for continuous or numerical
datasets.

We have seen the power of a single decision
tree, which is giving us pretty good accuracy.
Just think of some cases where we have many
more attribute values, where a single tree
cannot fit very well and is not sufficient to
predict correct outputs. In such cases, we can
use more trees and then combine their
predictions to get more accurate outputs out
of our model.

Random Forest
What is a random forest? Forest, a dark and
scary place with lots of predators who are
always seeking their hunt! Don't worry, folks!
We are not getting into that forest. We
created a decision tree in the previous
chapter; now, we will use them to create a
forest of such decision trees. We have seen
the power of decision trees and that they can
well fit on the dataset and predict correct
classes with good accuracy. However, the
real world is not as easy as the conceptual
world; you will not always get an ideal
categorical dataset with only a few attribute
values. Real-world data may be far bigger
than you think. It may have millions of
instances (such as a dataset of a census
analysis) with many more attributes (in
hundreds). In such cases, it is impossible to
use a single decision tree to get predictions.
So, what do you think is the solution? Yes!

We have to divide and conquer; you get it,
right? Increase the number of trees and divide
the dataset into different trees.

Creating multiple trees out of a single dataset
and then combining the predictions of all of
them is known as tree bagging, which is a
widely used method by the machine learning
community. This group of multiple trees is
known as a decision tree forest, and when we
create this forest using randomly selected
samples (in combination with randomly
selected features) out of our dataset, this
forest is known as a random forest.

This figure gives you an idea about bagged
decision trees:

Figure 3.1: Random forest architecture

Let's try to understand it with the help of a
problem. Do you remember we opened a fund
adviser company in the last chapter and it can
successfully choose its target customers using
a decision tree? Now, after some months (or
years) of effort, we are the topmost
investment adviser group and want to expand
our business throughout the country. So when
we start expanding our business in different
regions of our country, we will meet different
kinds of customers. And there will be more

parameters to add to our dataset, such as the
financial status of a state, city, or village,
educational status of the targeted region
(number of uneducated, graduate, and
postgraduate investors, and so on), and many
more factors such as urban and rural lifestyle.
So, there are many different parameters
possible to create a strong dataset through
which we can reach our target investors.

When we increase the number of parameters
in our dataset, it becomes more complex, not
only due to the more number of parameters,
but also due to the need to include numerical
values. So this dataset will not suit the
decision tree algorithm learned in Chapter 2,
Decision Trees. What! So, what we will do?
One solution is to create a tree that can
handle numerical values to create nodes and
branches. How to do it? The answer is the
Classification and Regression Trees
(CART) algorithm, which is widely used to
create decision trees. It is also the building
block of our random forest algorithm.

Classification and
regression trees
CART was proposed by Leo Breiman to the
machine learning community. Classically,
this algorithm is known as decision trees
only, but in the modern-day community,
some programming languages refer to it as
CART. This algorithm is the cornerstone of
the ensemble machine learning system, like
bagging and boosting.

The representation of CART is the binary tree
only, and this is the same binary tree that we
all have learned in data structures. Let's have
a brief review of the binary tree algorithm.

Binary trees are different from other trees in
the sense that in a normal tree structure, there
may be any number of children for a parent
node (including root); but in a binary tree, as
its name suggests, any parent node can have a

maximum of two branches (or nodes). This
figure shows a representation of a simple
binary tree:

Figure 3.2: Decision tree with categorical data

This tree is a subtree that we created in the
previous chapter. Here, you can see that each
node has a maximum of two children. One
more thing to add in here—when we work
with numerical values as attribute values, our
binary tree will look like this:

Figure 3.3: Decision tree with a numerical dataset

If you look closer at the preceding tree, you'll
see that we have changed our attribute values
from categorical to numerical. So, the criteria
of node splitting is going to be based on
numerical values only. There is an important
property of binary trees: one branch will have
values lesser than the parent node and the
other will have them higher than the parent
node. As you can see in the figure, all
children on the left have values more than
their parent nodes, while the children on the
right have lower values than the parent nodes.
This important criteria is used to divide data
using an anchor point and create a subset out
of it. Later on, we can check whether this
subset can be divided further or not.

Now, let's try to create a simple binary tree
out of a simple dataset to understand its
concept.

Suppose we have the following array of
values:

data =

[0.7,0.65,0.83,0.54,0.9,0.11,0.44,0.35,0.75,0.3,0.78,0.15]

After executing the preceding line, we will
have a list of numbers like this:

data = [0.7, 0.65, 0.83, 0.54, 0.9, 0.11, 0.44,

0.35, 0.75, 0.3, 0.78, 0.15]

Now, as we know that a binary tree may have
a maximum of two branches (left and right),
we can write it in the form of a Python
dictionary with key values as left and right.
There will be one more field called data,
where we can store our data. Each node in
our binary tree will have these three fields.
Let's write a method to create a node with the
aforementioned key values:

def getNewNode(data):

 node = {'data':[],'left':[],'right':[]}

 node['data'] = data

return node

As you can see, our dictionary node has three
fields where data will hold the node value at a
particular node, and left and right will hold
the next nodes.

Let's call the preceding method to create a
root node for our tree; we will choose median
of the preceding array as our root node. Let's
create it:

med = np.median(data)

print("Median of array is: %.2f"%med)

tree = getNewNode(med)

print(tree)

After executing the preceding lines, we will
get the following dictionary:

{'left': [], 'data': 0.59, 'right': []}

Now, as we have our root node, we can start
building our tree out of it. We will take array
values one by one using a for loop; we will
put values less than the parent node in the left
branch, while values greater than the parent
node will go to the right branch. The
following is the method to do this:

def createBinaryTree(tree,data):

 #Check whether we have any node in the tree

if not create one

 if not tree:

 tree = getNewNode(data)

 #Now if current value is less than parent

node put it in left

 elif data<=tree['data']:

 tree['left'] =

createBinaryTree(tree['left'],data)

 #else put it in right

 else:

 tree['right'] =

createBinaryTree(tree['right'],data)

 return tree

We will use recursion to create our tree.
Recursion is the way to call the same function
again and again to complete repetitive tasks,
As you can see in the preceding method, we
are calling createBinaryTree inside the same
function to build a tree under a tree; each call
to createBinaryTree will add a subtree to the
respective node.

Now that we have sufficient code to create a
binary tree for our small array, let's create tree
out of it:

for i in range(len(data)):

 value = data[i]

 tree = createBinaryTree(tree,value)

import pprint

pprint.pprint(tree)

As we have already created a root node of our

tree, we will now start extracting values from
the array and use them to create tree. After
the execution of the preceding block, we will
have a Python dictionary; it will have our
entire tree structure, as follows:

{'data': 0.59,

 'left': {'data': 0.54,

 'left': {'data': 0.11,

 'left': [],

 'right': {'data': 0.44,

 'left': {'data':

0.35,

 'left':

{'data': 0.3,

'left': {'data': 0.15,

'left': [],

'right': []},

'right': []},

 'right':

[]},

 'right': []}},

 'right': []},

 'right': {'data': 0.7,

 'left': {'data': 0.65, 'left': [],

'right': []},

 'right': {'data': 0.83,

 'left': {'data': 0.75,

 'left': [],

 'right': {'data':

0.78, 'left': [], 'right': []}},

 'right': {'data': 0.9,

'left': [], 'right': []}}}}

So, this is the tree we have built out of our
array.

The first question that can come to your mind
is, now what? What to do with this tree?
Well, binary trees are extremely useful
whenever you need to search for any element
in them. However, binary search is out of our
scope; we will see how a binary tree will help
us make our decision tree.

So, to make a decision tree out of a binary
tree algorithm, what should be required to
add to our code? Let's think about it:

We should have some metric on the
basis of which we can decide what
should be the value of our node
(including the root node)
We must know where to split a tree
branch
We must know some stopping criteria of
our tree growing process, or it may grow
for infinite time

What do I mean by some metric? Well, we
used information gain (using the attribute
entropy) to select nodes in the previous
chapter and that technique showed us some
promising results. But that criteria to check
the impurity of a subset is well defined for
categorical data rather than numerical. So
what should we use for our test case? Well,
we will be using Gini index as our metric to
quantify purity and choose the value of the
node.

Gini index for
impurity check
Gini index is the cost function used to
evaluate splits (nodes) in the dataset.
Whenever we use the word split, it belongs to
the node, so each split has two important
aspects; the first is attribute and the second is
attribute value, which will divide our data
into two groups.

Gini score can be used to know the impurity
of our dataset just like the information gain of
the attribute. But here, it works a bit
differently; Gini score suggests how well the
dataset can be separated. Let's understand this
with an example.

Suppose we have a system that generates 0 at
the output whenever the input is less than 0
and generates 1 at the output whenever the
input is greater than or equal to 0. We want to

write it in the form of an equation:

if x>=0:

 y= 1

else:

 y = 0

If we test a series of input, we can get the
result as follows:

X Y

-1.2 0

-3.2 0

2.1 1

1.5 1

Table 3.1

So, as you can see in the preceding table,
whenever the input value is less than 0, the

output is 0. And whenever the input is greater
than 0, the output is 1. This leads us to
creating a perfect separation of the preceding
data into two groups.

There may be one more case when there is
not necessarily a perfect separation (or split);
for example, suppose we modify the
preceding system as follows:

if (x+2)>=0:

 y= 1

else:

 y = 0

Our input-output table will change to this:

X Y

-1.2 1

-3.2 0

2.1 1

1.5 1

Table 3.2

This table does not have a perfect separation
of values, unlike the previous case; so how
can Gini score help us find the purity of
split?

To find Gini score from a dataset, our input
ingredient will be:

The class proportion
The number of instances belonging to a
group

The class proportion can be calculated using
the following formula:

Proportion =

class_value_count/number_of_instances_in_the_group

So, from the preceding formula, the total
class proportion for table 3.1 will be 0.5, and
if we consider two groups of less than 0 and
greater than 0, we will get a class proportion

of 1 for each group.

The formula for Gini score is:

Gini_index = sum(proportion*(1.0-proportion))

Can we write code for calculating Gini
index? Of course, yes!

import numpy as np

Calculate the Gini index for a split dataset

def gini_index(groups, class_values):

 #Initialize Gini variable

 gini = 0.0

 #Calculate propertion for each class

 for class_value in class_values:

 #Extract groups

 for group in groups:

 #Number of instance in the group

 size = len(group)

 if size == 0:

 continue

 #Initialize a list to store class

index of the instances

 r = []

 #get class of each instance in the

group

 for row in group:

 r.append(row[-1])

 #Count number of instances belongs

to current class

 class_count = r.count(class_value)

 #Calculate class proportion

 proportion =

class_count/float(size)

 #Calculate Gini index

 gini += (proportion * (1.0 -

proportion))

 return gini

The preceding function will take a group of
instances and distinct class values at the input
and return the Gini index for the dataset.

Let's test the preceding code for Table 3.1
and Table 3.2 and try to find out the Gini
index for each.

We can divide our dataset into two groups,
that is, negative input values and positive
input values; we will put our data into an
array as follows for Table 3.1:

data1 = [[[-1.2,0],[-3.2,0]],[[2.1,1],[1.5,1]]]

As there are two class values:

classes = [0, 1]

print("Gini index for Table 1 dataset is:

%.2f"% gini_index(data1, classes))

Let's execute the preceding lines and see what
we get for Table 3.1:

Gini index for Table 1 dataset is: 0.00

Similarly for Table 3.2:

data2 = [[[-1.2,1],[-3.2,0]],[[2.1,1],[1.5,1]]]

classes = [0, 1]

print("Gini index for Table 2 dataset is:

%.2f"% gini_index(data2, classes))

Gini index for Table 2 dataset is: 0.50

So, you see here that Table 3.1, as we know,
has a perfect split set, where two groups are
well separated. Whereas Table 3.2 has an
overlapping group and the Gini index for that
is 0.5.

Node selection
We are ready with the performance
evaluation metric, which will help us choose
node values for our decision tree; we want to
choose a node value that can split our data
with the lowest possible Gini score. To do
this, we will go through the following steps:

1. Choose an arbitrary value from the
attribute

2. Use this value as a threshold, and create
two groups from the attribute values
such that one group will have values less
than the threshold and the other group
will have values greater than or equal to
the threshold

3. Calculate the Gini index for the groups
4. Choose the value that gives the highest

Gini score as the node

Now we will add the preceding steps in our
code and see how it works.

Creating a split
We will write a function that will take the
threshold value and dataset as input arguments
to create two groups:

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub

sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold

 if values[attribute]<threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

Let's test the preceding code block for
separating negative and positive values from
dataset we have used earlier:

data = [[-1.2,0],[-3.2,0],[2.1,1],[1.5,1]]

Let’s call our function to split the preceding
data using threshold 0:

[lesser,greater] = createSplit(0, 0, data)

print('Group of negative values: ',lesser)

print('Group of positive values: ',greater)

After execution, we will have:

Group of negative values: [[-1.2, 0], [-3.2,

0]]

Group of positive values: [[2.1, 1], [1.5, 1]]

Congratulations! We are on the right track.

Now, to choose an attribute and its values as
a node, we have all of the ingredients in our
hands. We have a function that can create
groups of attribute values. We have a metric
that can tell us whether the selected attribute
value can be used as the node or not. So, we
have to combine them all to choose a node
and its value; we will add the following
function to our code, which will give us the
node value out of our dataset:

def getNode(dataset):

 #Create a variable to store class values of

instances

 class_values = []

 #Loop through each row and find out class

of instance

 for row in dataset:

 class_values.append(row[-1])

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in range(len(dataset[0])-1):

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 print('A%d <- %.1f Gini=%.1f' %

((index+1),

 row[index], gini))

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore,

 leftGroup = index, row[index],

gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

Let's test the preceding code block for a small
toy dataset:

SR A1 A2

1 3.2 1.5

2 1.3 1.2

3 3.7 2.8

4 2.9 2.4

5 3.9 1.9

6 7.5 3.5

7 9.0 3.2

8 7.4 0.9

9 9.5 4.2

10 7.3 3.5

Table 3.3

The preceding table shows a sample dataset
for which we will calculate the root node; for
that, we have to call our function, getNode,
which will internally call gini_index and
createSplit to get the best split attribute and its
value. Let's try it:

dataset = [[3.2,1.5,0],

 [1.3,1.2,0],

 [3.7,2.8,0],

 [2.9,2.4,0],

 [3.9,1.9,0],

 [7.5,3.5,1],

 [9.0,3.2,1],

 [7.4,0.9,1],

 [9.5,4.2,1],

 [7.3,3.5,1]]

#Call the function here

 node = getNode(dataset)

output of previous execution will be:

 A1 <- 3.2 Gini=2.0

 A1 <- 1.3 Gini=2.5

 A1 <- 3.7 Gini=1.4

 A1 <- 2.9 Gini=2.3

 A1 <- 3.9 Gini=0.0

 A1 <- 7.5 Gini=2.3

 A1 <- 9.0 Gini=2.5

 A1 <- 7.4 Gini=2.0

 A1 <- 9.5 Gini=2.5

 A1 <- 7.3 Gini=1.4

 A2 <- 1.5 Gini=4.7

 A2 <- 1.2 Gini=5.0

 A2 <- 2.8 Gini=1.4

 A2 <- 2.4 Gini=3.2

 A2 <- 1.9 Gini=4.1

 A2 <- 3.5 Gini=2.5

 A2 <- 3.2 Gini=2.0

 A2 <- 0.9 Gini=2.5

 A2 <- 4.2 Gini=2.5

 A2 <- 3.5 Gini=2.5

When we call the getNode function, it iterates
for each attribute and its values. Each value is
first considered as a threshold for creating
groups, and then these groups will get
evaluated using the Gini score; an attribute
with the lowest Gini score will be chosen as
the node in the decision tree.

As you can see in the printed results, the
value of 3.9 from the A1 attribute has the
lowest Gini score. If you look closely at our
dataset, you'll realize that all instances in A1
that are less than 3.9 have class attribute 0;
others have 1. This gives us the best split; one
can stop growing the tree here and can choose
it as the classifier.

Tree building
We have all the required ingredients in our
hand to create a decision tree, so what are we
waiting for? Let's start our own decision tree
to get an understanding of its working; we
will create a toy dataset for RGB pixel values
to build a tree. Our target is to segment out
two different color pixel values:

SN RED GREEN

1 0.61 0.31

2 0.29 0.03

3 0.66 0.39

0.32 0.07

4

5 0.64 0.35

6 0.67 0.36

7 0.40 0.12

8 0.69 0.38

9 0.25 0.03

10 0.48 0.19

Table 3.4 RGB pixel values

However, before we go ahead and build our
tree, we should know when to stop growing
it. In many cases where we start building the

tree for larger datasets, we may include some
redundant nodes, which unnecessarily
increase the size of our tree. To overcome
this problem, we will add two criteria to
determine the stopping of tree building. One
is the maximum depth (or number of nodes
under the root) and the other is to determine
the minimum number of instances to be
inspected by any node. So, before adding a
node to our tree, we will check these two
criteria and decide whether to add them or
not.

What if we reach the threshold of our depth
or the number of minimum instances? Or
what if we get a subset in which all instances
belong to the same class? Then what should
we do? Well, in that case, the current node
will hold the value of the maximum occurring
class in the subset. We can write a code block
for it:

def terminalNode(dataset):

 #Create a variable to store the class value

and count the class occurance

 classes = []

 for row in dataset:

 classes.append(row[-1])

 return max(set(classes), key=classes.count)

So, whenever we reach the thresholds of
depth or minimum instances, we will call the
preceding block to assign the class label to
the node.

It's time to add the final page of the story to
build our tree, but first let's check our
ingredients of tree building. We will follow
these steps:

1. Loop through each attribute and its value
2. Choose this value as the threshold and

create two subsets out of your data
3. Evaluate these subsets by finding their

Gini score
4. Choose the value with the lowest Gini

score as the root node
5. Repeat the preceding steps until you

reach the maximum depth or minimum
instance count or the pure subset

Let's write a function for building our tree:

def buildTree(node, max_depth, min_size,

depth):

 #Lets get groups information first.

 left, right = node['groups']

 del(node['groups'])

 # check if there are any element in the

left and right group

 if not left or not right:

 #If there is no element in the groups

call terminal Node

 combined = left+right

 node['left'] = terminalNode(combined)

 node['right']= terminalNode(combined)

 return

 # check if we have reached to maximum depth

 if depth >= max_depth:

 node['left']=terminalNode(left)

 node['right'] = terminalNode(right)

 return

 # if all okey lest start building tree for

left side nodes

 # if minimum instances are done by the node

stop further build

 if len(left) <= min_size:

 node['left'] = terminalNode(left)

 else:

 #Create new node under left side of the

tree

 node['left'] = getNode(left)

 #append node under the tree and

increase depth by one.

 buildTree(node['left'], max_depth,

min_size, depth+1) #recursion will take place

in here

 # Similar procedure for the right side

nodes

 if len(right) <= min_size:

 node['right'] = terminalNode(right)

 else:

 node['right'] = getNode(right)

 buildTree(node['right'], max_depth,

min_size, depth+1)

As you can see, here is the code of our tree
building. Now it's time to execute the all
functions to build our first CART-based tree
and see how it works actually.

Let's start with loading our data table into a
NumPy array:

dataset = [[0.61, 0.31, 0.54, 0],

 [0.29, 0.03, 0.24, 1],

 [0.66, 0.39, 0.61, 0],

 [0.32, 0.07, 0.29, 1],

 [0.64, 0.35, 0.58, 0],

 [0.67, 0.36, 0.59, 0],

 [0.40, 0.12, 0.35, 1],

 [0.69, 0.38, 0.60, 0],

 [0.25, 0.03, 0.24, 1],

 [0.48, 0.19, 0.41, 0]]

Before we start building our decision tree, we
need to define its hyperparameters, that is,
maximum depth and number of instances for
a node. For our problem, we will go for a
maximum depth of three nodes before
defining the terminal node, and the maximum
instances for a node will be set to one. Now,
our first task is to get the root node for our
decision tree. To do this, we will call
the getNode function; let's see how it works:

Node = getNode(dataset)

And the output after the execution of
the getNode function:

A1 <- 0.61 Gini=2.2

A1 <- 0.29 Gini=1.9

A1 <- 0.66 Gini=2.5

A1 <- 0.32 Gini=1.2

A1 <- 0.64 Gini=2.4

A1 <- 0.67 Gini=2.5

A1 <- 0.40 Gini=0.0

A1 <- 0.69 Gini=2.4

A1 <- 0.25 Gini=2.2

A1 <- 0.48 Gini=1.6

A2 <- 0.31 Gini=2.2

A2 <- 0.03 Gini=1.9

A2 <- 0.39 Gini=2.4

A2 <- 0.07 Gini=1.2

A2 <- 0.35 Gini=2.4

A2 <- 0.36 Gini=2.5

A2 <- 0.12 Gini=0.0

A2 <- 0.38 Gini=2.5

A2 <- 0.03 Gini=1.9

A2 <- 0.19 Gini=1.6

A3 <- 0.54 Gini=2.2

A3 <- 0.24 Gini=1.9

A3 <- 0.61 Gini=2.4

A3 <- 0.29 Gini=1.2

A3 <- 0.58 Gini=2.4

A3 <- 0.59 Gini=2.5

A3 <- 0.35 Gini=0.0

A3 <- 0.60 Gini=2.5

A3 <- 0.24 Gini=1.9

A3 <- 0.41 Gini=1.6

As we know, getNode will treat each attribute

value as an anchor point, create two groups
out of our data, and then calculate the Gini
score for each anchor value. The value with
the lowest Gini score will be chosen as the
node value. So, let's see what we have got in
our root node:

{'attribute': 0,

 'groups': ([[0.29, 0.03, 0.24, 1],

 [0.32, 0.07, 0.29, 1],

 [0.4, 0.12, 0.35, 1],

 [0.25, 0.03, 0.24, 1]],

 [[0.61, 0.31, 0.54, 0],

 [0.66, 0.39, 0.61, 0],

 [0.64, 0.35, 0.58, 0],

 [0.67, 0.36, 0.59, 0],

 [0.69, 0.38, 0.6, 0],

 [0.48, 0.19, 0.41, 0]]),

 'value': 0.4}

You can see in the preceding node that we
have three fields in it: attribute, groups, and
value. The winner attribute in our case is the
first attribute, that is, red; and the value that
creates the best split is 0.4.

You can clearly see the segmentation of two
different classes here as one group has a red
value less than 0.4 and all instances have a
class value of 1. The other group with red

more than 0.4 has a class value of 0.

What? We have classified our data
successfully into two groups using the root
node only, so should we go ahead from here?
Well, this all depends on how complex our
problem is. So if we create a tree with depth 1
(with only a root node), it will be sufficient to
classify the preceding dataset into two
classes. Let's print our function using pprint
and see what we've got under the root node:

root = getNode(dataset)

buildTree(root, 1, 1, 1)

pprint.pprint(root)

{'attribute': 0, 'left': 1, 'right': 0,

'value': 0.4}

Let's see whether our tree is capable of
predicting the correct classes for our training
dataset; to get predictions out of a decision
tree, we have to add a function to our main
code:

def predict(node, row):

 #Get the node value and check whether the

attribute value is

 less than or equal.

 if row[node['attribute']] <= node['value']:

 #If yes enter into left branch and

check whether it has

 another node or the class value.

 if isinstance(node['left'], dict):

 return predict(node['left'],

row)#Recursion

 else:

 #If there is no node in the branch

 return node['left']

 else:

 if isinstance(node['right'], dict):

 return predict(node['right'], row)

 else:

 return node['right']

The preceding function is easy to interpret as
it just matches the attribute values and does
recursion to enter into more depth. Let's
execute it and see what we get for our
training set:

for row in dataset:

 prediction = predict(tree, row)

 print('Expected=%d, Got=%d' % (row[-1],

prediction))

Output of the preceding code execution is:

 Expected=0, Got=0

 Expected=1, Got=1

 Expected=0, Got=0

 Expected=1, Got=1

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=1, Got=1

 Expected=0, Got=0

 Expected=1, Got=1

 Expected=0, Got=0

So, as you can see, we have a tree with a root
node (only) having two branches on left and
right, which classify data into 0 and 1 using
root value 0.4. It classifies all of the instances
correctly.

But sometimes, there are features in a dataset
that cause various overlaps among instances,
and because of this, the root node is not
sufficient to segment out the data into
different classes. Let's make some changes to
the preceding RGB dataset and remake it
with some complexity.

SN RED GREEN BLUE CLASS

1 0.95 0.30 0.63 0

2 0.83 0.40 0.61 0

3 0.75 0.25 0.59 0

4 0.63 0.19 0.39 0

5 0.65 0.45 0.45 1

6 0.53 0.30 0.19 1

7 0.32 0.50 0.35 1

8 0.77 0.55 0.41 1

Table 3.5

Let's feed this data into a NumPy array:

dataset = [[0.95, 0.30, 0.63, 0],

 [0.83, 0.40, 0.61, 0],

 [0.75, 0.25, 0.59, 0],

 [0.63, 0.19, 0.39, 0],

 [0.65, 0.45, 0.45, 1],

 [0.53, 0.30, 0.19, 1],

 [0.32, 0.50, 0.35, 1],

 [0.77, 0.55, 0.41, 1]]

Call the buildTree function in the same manner
with the same hyperparameters:

root = getNode(dataset)

buildTree(root, 1, 1, 1)

pprint.pprint(root)

{'attribute': 2, 'left': 1, 'right': 0,

'value': 0.45}

#Let's print the results for the training data;

for row in dataset:

 prediction = predict(tree, row)

 print('Expected=%d, Got=%d' % (row[-1],

prediction))

Following is the predicted outputs by the tree:

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=0, Got=1

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=1, Got=1

Oh! We have got one wrong prediction on the
training data. Why? The answer is quiet
simple: we need more nodes to handle the
data. What do you think? Can adding one
more depth solve our problem? Let's see:

root = getNode(dataset)

buildTree(root, 2, 1, 1)

pprint.pprint(root)

{'attribute': 2,

 'left': {'attribute': 1, 'left': 0, 'right':

1, 'value': 0.19},

 'right': {'attribute': 0, 'left': 0, 'right':

0, 'value': 0.95},

 'value': 0.45}

And the results are:

for row in dataset:

 prediction = predict(tree, row)

 print('Expected=%d, Got=%d' % (row[-1],

prediction))

Predictions for depth =2 are:

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=0, Got=0

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=1, Got=1

Hell Yes! We got the correct predictions by
increasing the depth of our tree. How did this
happen? To understand this, we have to take
a look at the dataset and tree.

At depth – 1 (root
node)
Get the root node and its group:

root = getNode(dataset)

We've got the lowest Gini score of 1.3 for
attribute number three and value 0.45:

A3 <- 0.45 Gini=1.3

Print the root node:

pprint.pprint(root)

{'attribute': 2,

 'groups': ([[0.63, 0.19, 0.39, 0],

 [0.65, 0.45, 0.45, 1],

 [0.53, 0.3, 0.19, 1],

 [0.32, 0.5, 0.35, 1],

 [0.77, 0.55, 0.41, 1]],

 [[0.95, 0.3, 0.63, 0],

 [0.83, 0.4, 0.61, 0],

 [0.75, 0.25, 0.59, 0]]),

 'value': 0.45}

If you observe the Gini score, it suggests that

there is no pure subset found for the root
node, and this is also reflected in the groups
divided on the basis of the score. As you can
see, group one has one wrong instance (the
first one) while the second group consists of a
pure subset. Thus, we have to move further to
create more subsets for group 1 so that we
can reach a pure subset.

At depth – 2 (left
branch)
As we have got our root node, we can start
building the tree using the buildTree function.
As the buildTree function takes node and
hyperparameters as the input, we will send
the root node and other hyperparameters such
as max depth and minimum: split.maximum
depth (2), node instances (1), and current depth
(that is 1).

Now, left, right = node['groups'] will extract
groups created by the previous node and delete
the group information from the dictionary as
it is not further required.

In the next step, the program will check
whether there is any element in the groups or
not. As we have the data in both of the
groups, the program will check the depth
parameter.

We enter the left branch and again call the
getNode function; now, we get a Gini score of
0.0 for attribute number two and value 0.19:

A2 <- 0.19 Gini=0.0

And the node data is:

{'attribute': 1,

 'groups': ([[0.63, 0.19, 0.39, 0]],

 [[0.65, 0.45, 0.45, 1],

 [0.53, 0.3, 0.19, 1],

 [0.32, 0.5, 0.35, 1],

 [0.77, 0.55, 0.41, 1]]),

 'value': 0.19}

Here, you can see that groups created using
value 0.19 are separating the data into two
pure subsets; now, if we go towards the left
branch, we will end up with class value 0, and
it's 1 for the right branch.

At depth – 2 (right
branch)
We have seen earlier that the right-hand-side
subset of the root node is a pure subset. Here
we need to put one more node under the root
node. You may have a question: why are we
going to get one more node when we have a
pure subset?

The answer is a binary tree is always a
balanced binary tree, which means a tree
from the left will always be equal to a tree
from the right. In other words, each node of a
binary tree will have exactly two nodes under
it. So, we will call getNode on the pure subset
too, where we will get:

{'attribute': 0, 'left': 0, 'right': 0,

'value': 0.95}

At the end of the exercise, we will get
something like this:

Figure 3.4: Decision tree

Case study – breast
cancer type
prediction
As you know, the best way to know the
performance of an algorithm is to apply it for
some practical usage. We will apply our
decision tree algorithm to a practical scenario
and see how it performs there. We will use
data of a breast cancer study that is
available online at https://archive.ics.uci.edu/ml/datase
ts/Breast+Cancer+Wisconsin+%28Original%29; here is
the summary of the dataset:

Data set Name: Breast Cancer Wisconsin

(Original) Data Set

Number of Instances: 699

Attributes characteristics: Integer

Number of attributes: 10

Number of classes: 2

Attribute Information:

 1. Sample code number: id number

 2. Clump Thickness: 1 - 10

 3. Uniformity of Cell Size: 1 - 10

 4. Uniformity of Cell Shape: 1 - 10

 5. Marginal Adhesion: 1 - 10

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

 6. Single Epithelial Cell Size: 1 - 10

 7. Bare Nuclei: 1 - 10

 8. Bland Chromatin: 1 - 10

 9. Normal Nucleoli: 1 - 10

 10. Mitoses: 1 - 10

 11. Class: (2 for benign, 4 for malignant)

This data can be downloaded in the form of a
.csv file. As the data values are strings, first
we have to convert those strings into float
type and the class values into integer type.
We will have to remove the ID numbers of
the samples too. To read data from the .csv
file, we will need to add a function to our
code as follows:

from csv import reader

def readCsv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

 As our data has string format as well as some
missing data values, first we need to convert

all values to the numerical datatype. We will
replace all missing values with 0 at the
moment. The following function will help us
to do so:

def convert_column_to_float(dataset, column):

 for row in dataset:

 if row[column]=='?':

 row[column] = 0

 else:

 row[column] =

float(row[column].strip())

We will need one more function to split the
dataset into two parts, that is, training data and
testing data. We will train our model on the
training data and the testing data will be used
to validate the model accuracy:

def getTrainTestData(dataset,split):

 training = []

 testing = []

 shape = np.shape(dataset)

 trainlength = np.floor(split*shape[0])

 for i in range(trainlength):

 training.append(dataset[i])

 for i in range(trainlength,shape[0]):

 testing.append(dataset[i])

 return training,testing

So, we are ready with all the helping

functions to build a decision tree and get
predictions out of it. Let's start:

filename = 'breast_cancer_data.csv'

dataset = readCsv(filename)

Convert attributes to numerical type

for i in range(0, len(dataset[0])):

 convert_column_to_float(dataset, i)

#Now remove index column from the dataset

dataset_new = []

for row in dataset:

 dataset_new.append([row[i] for i in

range(1,len(row))])

#Get training and testing data split

training,testing =

getTrainTestData(dataset_new, 0.7)

#We will build our tree for maximum depth of 3

and with minimum instances of 1

tree = build_tree(training,3,1)

pprint.pprint(tree)

Our tree, after training for the given
hyperparameters, is as follows:

{'attribute': 1,

 'left': {'attribute': 0,

 'left': {'attribute': 7, 'left': 2.0,

'right': 4.0, 'value': 8.0},

 'right': {'attribute': 0, 'left':

4.0, 'right': 4.0, 'value': 10.0},

 'value': 8.0},

 'right': {'attribute': 0, 'left': 4.0,

'right': 4.0, 'value': 10.0},

 'value': 3.0}

Now, let's add one more function to evaluate
the model performance:

def getAccuracy(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Let's test our model for training and testing
data:

for row in training:

 prediction = predict(tree, row)

 pre.append(prediction)

 actual = act.append(row[-1])

acc = getAccuracy(act, pre)

print('training accuracy: ',acc)

The training accuracy:

'training accuracy: ', 93.25153374233128

Similarly, the testing accuracy:

'testing accuracy: ', 94.70672389127324

So, as you can see, we are getting a decent
accuracy for our testing data. This can be
increased by increasing the depth of our tree,

but eventually, it will take more computation
time to build the tree.

Decision tree bagging
Now you know how a decision tree can be
used to make predictions on numerical data.
It’s time to take a minute and think over it.
Can we improve the accuracy we
are currently getting? Or can our decision tree
avoid the problem of high variance
(overfitting)? The answer is surely yes. But
how? Well, if you remember Chapter 1,
Introduction to Ensemble Learning, we had
discussed bagging algorithms, where we
trained different models on different samples
of data and tried to come up with an
improved version of a classifier. So, can we
use that technique in here too? Surely, yes!

Decision trees have a tendency of high
variance, which leads to failure in their
generalization. Tree bagging is a technique
that can help us solve this problem. But why?
Because bagging has its unique feature of
sampling; it creates different samples out of

data with replacements. This means one
instance may appear in multiple samples.
After creating samples from data, we will
create different tree models for these samples,
and at the prediction stage, we can take the
average prediction of all trees.

You can understand the whole process from
the following figure:

Figure 3.5: Decision tree bagging

The preceding figure shows an interpretation
of decision tree bagging, where we can
prepare different tree models and combine
their results to get the final prediction. The
sampling of this data can be understood from
our previous toy dataset:

SN RED GREEN BLUE CLASS

1 0.95 0.30 0.63 0

2 0.83 0.40 0.61 0

3 0.75 0.25 0.59 0

4 0.63 0.19 0.39 0

5 0.65 0.45 0.45 1

6 0.53 0.30 0.19 1

7 0.32 0.50 0.35 1

8 0.77 0.55 0.41 1

Table 3.6

Now, if we want to create samples with
replacement of instances from the preceding
dataset, these samples will look something
like this:

Sample-1

SN RED GREEN BLUE CLASS

1 0.95 0.30 0.63 0

2 0.83 0.40 0.61 0

8 0.77 0.55 0.41 1

Table 3.7

Sample-2

SN RED GREEN BLUE CLASS

2 0.83 0.40 0.61 0

3 0.75 0.25 0.59 0

4 0.63 0.19 0.39 0

Table 3.8

Sample-3

SN RED GREEN BLUE CLASS

2 0.83 0.40 0.61 0

5 0.65 0.45 0.45 1

6 0.53 0.30 0.19 1

Table 3.9

As you can see in the preceding example,
each sample has overlapping instances. When
we train our classification models over these
samples, each tree learns a different kind of
population, which automatically helps to
create a more generalized model. As each
classifier is sharing some common instances,
their predictions are quiet correlated, which
helps us get improved accuracy over a single
tree classifier. This is why bagging classifiers
are more famous in scientific
communities than single-model-based
classifiers.

From bagging to
random forest
As we have discussed, bagging is nothing but
creating multiple samples out of our dataset
and then training different decision trees on
those samples. The samples are quiet
correlated; again, this correlation can cause
high variance of the classifier. So, what we
can do to make it less correlated? Well, we
can choose each subsample with different
features. Wait! What does that mean?
Suppose we have a dataset with 10 attributes
(as we have seen in the previous example).
We can create a sample out of it with five
instances, which will have only three features
per sample. Let's understand it with an
example. Let's add three more features to our
previous pixel data. Where earlier we were
having R, G, and B values of pixels, we will
now add hue, saturation, and value to the

feature table:

SN RED GREEN BLUE H S V

1 0.95 0.30 0.63 0.12 0.78 0.85

2 0.83 0.40 0.61 0.15 0.68 0.75

3 0.75 0.25 0.59 0.26 0.65 0.86

4 0.63 0.19 0.39 0.24 0.58 0.68

5 0.65 0.45 0.45 0.38 0.45 0.56

6 0.53 0.30 0.19 0.45 0.36 0.55

7 0.32 0.50 0.35 0.52 0.38 0.48

8 0.77 0.55 0.41 0.49 0.27 0.43

Now, if we create random samples from the
preceding dataset with random features, it
will look something like this:

 Sample-1

SN RED GREEN CLASS

1 0.95 0.30 0

2 0.83 0.40 0

6 0.53 0.30 1

Sample-2

SN H S CLASS

1 0.12 0.78 0

3 0.26 0.65 0

4 0.24 0.58 0

Sample-3

SN BLUE S CLASS

1 0.63 0.78 0

3 0.59 0.65 0

4 0.39 0.58 0

Each of our classifiers will learn different
instances (with some overlap) with different
features, which creates a less correlated but
generalized predictor.

So, how do we implement bagging using
decision trees? The answer is quite simple.
We have to modify our code slightly and add
some more helper functions to our previous
decision tree algorithm's code. Let's do it.

First, we will change the function getNode for
calculating the node value; we will add
functionality to select limited features from
the dataset to calculate the Gini score for node
selection:

def getNode(dataset, features):

 class_values = []

 for row in dataset:

 class_values.append(row[-1])

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run a loop to randomly select attribute

and create a list of attributes

 features = list()

 while len(features) < n_features:

 index = randrange(len(dataset[0])-1)

 #Do not repeat same features from the

sample

 if index not in features:

 features.append(index)

 #Run loop to access selected attributes and

their values

 for index in features:

 #for index in range(len(dataset[0])-1):

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

So, you see we added a loop to randomly
select features out of the dataset!

To evaluate the performance of our learned
model, we will use the k-folds validation
strategy. We will create different subsamples
(folds) from the data, train a model for each
sample, and test that model against each fold

to match the accuracy. We will use mean
model error as the performance metric and
classification accuracy will be used to
evaluate each model. For this purpose, we
will add two more helper functions to help us
create validation folds and evaluate the
algorithm.

The following is the code for creating folds
out of dataset:

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

 #Create an empty list

 dataset_split = list()

 dataset_copy = list(dataset)

 #Define the fold size

 fold_size = int(len(dataset) / n_folds)

 #Run through the loop and create sub sets

of the dataset

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index =

randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Now, we will write a function to evaluate the
performance of the algorithm:

Evaluate an algorithm using a cross

validation split

def evaluate_algorithm(dataset, algorithm,

n_folds, *args):

 #Create k-folds

 folds = cross_validation_split(dataset,

n_folds)

 #List to store the prediction scores

 scores = list()

 #Run algorithm for each fold

 for fold in folds:

 #get training set from the fold

 train_set = list(folds)

 #Remove current fold from the training

set

 train_set.remove(fold)

 #Combine other k-1 folds into one

dataset

 train_set = sum(train_set, [])

 #create empty list for test dataset

 test_set = list()

 #Create Test set from the fold

instances and remove class label

 for row in fold:

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 #Train model for the training set and

test it on the test set

 predicted = algorithm(train_set,

test_set, *args)

 #create a list of actual labels

 actual = [row[-1] for row in fold]

 #Calculate accuracy for the current

fold

 accuracy = accuracy_metric(actual,

predicted)

 scores.append(accuracy)

 return scores

This is self-explanatory; we are just creating
folds, training the models, and then
calculating the accuracy of the models.
Another thing to consider is creating a
combined model using multiple decision
trees. For that, we first have to create samples
out of our data. And for that, we add the
following function to our code:

def subsample(dataset, ratio):

 #Create empty list to store the samples

 sample = list()

 #Get the sample size

 n_sample = round(len(dataset) * ratio)

 #Start creating samples out of data

 while len(sample) < n_sample:

 index = randrange(len(dataset))

 sample.append(dataset[index])

 return sample

Now, we are almost ready to take-off. But
wait! Where is our function for creating the
random forest? Don't worry, we'll be adding
that in the next few lines.

Before adding the random forest function, we
add a function that we will use in the random
forest algorithm to make predictions out of
multiple trees:

def bagging_predict(trees, row):

 #Get the builded trees and make a list of

their predictions

 predictions = [predict(tree, row) for tree

in trees]

 #Return the prediction with maximum

occurance

 return max(set(predictions),

key=predictions.count)

The following is the random forest's code:

def random_forest(train, test, max_depth,

min_size, sample_size, n_trees, n_features):

 #Create a list to store decision tree

models

 trees = list()

 #Create different dicision trees for

different samples and features

 for i in range(n_trees):

 #Create Sub-sample of data for the

given sample size

 sample = subsample(train, sample_size)

 #Start building tree using buildTree

function

 tree = build_tree(sample, max_depth,

min_size, n_features)

 #Append builded tree to the tree list

 trees.append(tree)

 #Create a list of predictions

 predictions = [bagging_predict(trees, row)

for row in test]

 return(predictions)

So, the following are key steps of the
preceding code block:

1. Create a subsample of the desired size
from the dataset

2. Create one sample for each tree
3. Create k-folds for each sample to

evaluate the performance of the model
4. Train a tree for each sample and store it

in the tree list
5. At the time of testing, feed an instance

through each tree and get a prediction
from each tree

6. Choose the prediction coming from the
maximum number of the trees

Now, let's use the preceding code to test real-
world data. Just as we used for the decision
tree algorithm, we will try random forest on
the same breast cancer dataset.

So, we will go ahead and start our
implementation in the same manner as we
have done earlier:

filename = 'breast_cancer_data.csv'

dataset = readCsv(filename)

Convert attributes to numerical type

for i in range(0, len(dataset[0])):

 convert_column_to_float(dataset, i)

Convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

#Now remove index column from the dataset

dataset_new = []

for row in dataset:

 dataset_new.append([row[i] for i in

range(1,len(row))])

dataset = dataset_new

We will check the performance for 5-fold
validation with three different forest sizes (5,
25, 75). In them, each tree will be grown up to
a maximum depth of 5 and the sample size
will be 10% of the total dataset. The number

of random features in this case will be the
square root of feature length. For breast
cancer data, the number of features will be
three:

Evaluate algorithm

n_folds = 5

max_depth = 5

min_size = 1

sample_size = 0.1

n_features = int(sqrt(len(dataset[0])-1))

Check the performance for different number of

trees.

for n_trees in [1, 5, 10]:

 scores = evaluate_algorithm(dataset,

random_forest, n_folds, max_depth, min_size,

sample_size,

n_trees, n_features)

 print('Trees: %d' % n_trees)

 print('Scores: %s' % scores)

 print('Mean Accuracy: %.3f%%' %

(sum(scores)/float(len(scores))))

Execution results of the preceding codes are:

Trees: 5

Scores: [94.24460431654677, 93.5251798561151,

89.92805755395683, 96.40287769784173,

97.12230215827337]

Mean Accuracy: 94.245%

Trees: 25

Scores: [97.84172661870504, 97.12230215827337,

94.96402877697841, 96.40287769784173,

94.96402877697841]

Mean Accuracy: 96.259%

Trees: 75

Scores: [96.40287769784173, 97.84172661870504,

95.68345323741008, 98.56115107913669,

95.68345323741008]

Mean Accuracy: 96.835%

You can see the improvement in the results.
When we were using a single decision tree
with all of the features in one shot, our testing
accuracy was hardly reaching 95%. Whereas,
at the time of bagging, we started from 5 trees
and got an initial accuracy of 94.24%. When we
increased the number of trees to 25, the
accuracy crossed the 96% mark, and when we
further increased the number of trees to 75, we
got almost 97% accuracy out of our model.

The preceding analysis clearly shows the
advantage of bagging over a single-model-
based prediction. This model is much more
generalized and has a much more diverse
distribution than a single model, which helps
us to achieve lower variance between
training and testing sets.

Summary
In this chapter, we learned how we can make
decisions on real-world numerical data using
decision trees. We started from a simple
binary tree and converted it into a decent
classifier. Finally, we used bagging for
practical data with a very high prediction rate.

Now a question arises here, can we do better
than this? And the answer is, this is
subjective! Maybe we can improve the
performance by finding more optimized
parameters for our tree building process; or,
there are possibilities that we can't improve
the accuracy further. It all depends on the
complexity of data as well as how it has been
processed.

Now, there are various possibilities you can
try with the random forest models. You can
use them as regression models or convert
them into multi-class classifiers. There are

many different ways to optimize their hyper-
parameters, but greedy search algorithms are
quiet popular. Many data preprocessing
techniques can be used to make fruitful
results out of your classification model, such
as dimension reduction of data, smoothing of
the dataset, and using interpolation for the
missing values. I think you are ready to play
with decision trees for many practical
applications. Go try them, and remember, the
more you fail, the more you learn.

Random Subspace
and KNN Bagging
In Chapter 3, Random Forest, we learned how
we can use bagging for the classification of
data. We saw an important aspect of bagging
in there, that is, attribute selection, where we
created multiple samples of data by limiting
the number of features in each sample. We
have also seen that we can improve the
classification accuracy by doing that. This is
known as subspace bagging or attribute
bagging.

In this chapter, we will go into the details of
this bagging type and use it with another
widely used classification algorithm, K-
Nearest Neighbor (KNN), which is very
popular in the data science world because of
its simplicity and ease to implement. Earlier
we have seen how to do subspace bagging;
here, we will see some technical aspects of it

and learn why this strategy works.

Subspace bagging
So, I think this is enough to talk about. Now,
let's jump straight to the point with the use of
an example. As I have discussed in the
previous chapter, subspace bagging helps
create classifiers that are more generalized
than classifiers trained without attribute
bagging. But why? We can understand this
process with a daily-life example. Suppose
we have a bunch of kids from kindergarten.
Let's take them to the city zoo and show them
different animals, mammals, birds, reptiles,
and so on, and tell them to remember the
animals. After visiting the zoo, we will call
every child individually and ask them to
describe which animals they have seen in the
zoo. Sounds easy? No, folks! It is very
difficult for a child to remember all the
animals of a zoo; so, we will tell them to tell
us about any three animals of the zoo.

Now remember, we have asked them to

choose any three animals, not unique animals.
This means two different children can tell us
the same animal names. So, we can get the
following answers from them:

Some children choose elephant (because
of their size), deer, and peacock
Some are more interested in elephant,
giraffe, and python
Some are going for tiger, rabbit, and
giraffe
Some are choosing deer, elephant, and
python
And many are going for elephant, tiger,
and rabbit

Figure 4.1: Sub-space bagging example

So, what have we got after this exercise?

Each group of children has remembered
something different from the others
Some groups having some common
animals
If we sum up their review, we will get
almost all of the animals of the zoo

So what? Well, you see, we have got our
bagged classifier. Let me summarize it. As
each child has the ability to learn about
four to five animals only, we have asked
them to tell us about any three of them, so
each child who visits the zoo tells us about
the animals. Some are quite easy to remember
(say, elephant) but some are not that easy
(some birds). What happens if we combine
the results of their test?

We will get all of the animals present in
the zoo (which is almost impossible for
a single child)
As some animals are common in their
answers, it tells us that all of them are
talking about the same zoo
As we have told each child to remember
only three animals, there are fewer
chances that they will forget those
animals in the future

Can we relate this example with
the classification model? Of course!
The same strategy is what we used to train

our random forest classifier and is the reason
for getting an accuracy improvement over a
single decision tree:

We have covered (fit) a model by
covering all of the features (which is
difficult in the case of a single classifier)
As some features will be shared by the
classifier, it shows that all of the data is
derived by the same population
The problem of high variance
(overfitting) is less likely in this case,
because we get different perspectives
(by different classifiers) of our problem

Now that we have understood the concept
behind attribute bagging, let's see its impact
on practical applications. We will use the
helper function from Chapter 3, Random Forest,
which we have developed to build a random
forest algorithm as well as a decision tree.

Case study –
subspace bagging
We will use a publicly available dataset of
sonar signal returns from different surfaces;
the dataset has 208 observations and 60
features for classifying the instances into two
groups—mine (M) and rock (R). The
variables are in the range of 0 to 1.

Here are some more details about the dataset:

Location: https://archive.ics.uci.edu/ml/datase

ts/Connectionist+Bench+

(Sonar,+Mines+vs.+Rocks);

Data set Name: Connectionist Bench (Sonar,

Mines vs. Rocks) Data Set

Number of Instances: 208

Attributes characteristics: Float

Number of attributes: 60

Number of classes: 2

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

 More information
about the dataset
The sonar.mines file contains 111 patterns
obtained by bouncing sonar signals off a
metal cylinder at various angles and under
various conditions. The
sonar.rocks file contains 97 patterns obtained
from rocks under similar conditions. The
transmitted sonar signal is a frequency-
modulated chirp, rising in frequency. The
dataset contains signals obtained from a
variety of different aspect angles, spanning 90
degrees for a cylinder and 180 degrees for a
rock. Each pattern is a set of 60 numbers in
the range of 0.0 to 1.0. Each number
represents the energy within a particular
frequency band, integrated over a certain
period of time. The integration aperture for
higher frequencies occurs later in time, since
these frequencies are transmitted later during

the chirp. The label associated with each
record contains the letter R if the object is a
rock and M if it is a mine (metal cylinder). The
numbers in the labels are in increasing order
of aspect angle, but they do not encode the
angle directly.

We will use the same random forest
algorithm as we used in Chapter 3, Random
Forest to compare the effect of subspace
bagging with the normal bagging algorithm.

For this, we have to use function
getNode() with subspace bagging (with feature
selection) and without subspace bagging
(with all features); we will make the changes
in the following code block:

This is the version without subspace selection
of function getNode(), which we have
used earlier to build decision trees:

def getNode(dataset,n_features):

 class_values = []

 for row in dataset:

 class_values.append(row[-1])

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 for index in range(len(dataset[0])-1):

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

#Let’s start the comparison;

Test the random forest algorithm

seed(1)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

dataset_new = []

for row in dataset:

 dataset_new.append([row[i] for i in

range(1,len(row))])

dataset = dataset_new

evaluate algorithm

n_folds = 5

max_depth = 5

min_size = 1

sample_size = 0.1

for n_trees in [5, 25,50]:

 scores = evaluate_algorithm(dataset,

random_forest, n_folds, max_depth, min_size,

sample_size,

n_trees, n_features)

 print('Trees: %d' % n_trees)

 print('Scores: %s' % scores)

 print('Mean Accuracy: %.3f%%' %

(sum(scores)/float(len(scores))))

We will use 5-fold validation using decision
trees with depth 5. The subsample size will be
10% of the number of instances. We will
create a forest of 5, 25, and 50 trees. All helper
functions will remain the same except getNode
without subspace selection. After executing
the code, we will get:

Trees: 5

Scores: [75.60975609756098, 51.21951219512195,

65.85365853658537, 68.29268292682927,

68.29268292682927]

Mean Accuracy: 65.854%

Trees: 25

Scores: [70.73170731707317, 65.85365853658537,

78.04878048780488, 73.17073170731707,

70.73170731707317]

Mean Accuracy: 71.707%

Trees: 50

Scores: [58.536585365853654, 65.85365853658537,

80.48780487804879, 75.60975609756098,

70.73170731707317]

Mean Accuracy: 70.244%

The getNode() function and use it in a similar
manner as we used it in Chapter 3, Random
Forest to create a random forest:

def getNode(dataset,n_features):

 class_values = []

 for row in dataset:

 class_values.append(row[-1])

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 features = list()

 while len(features) < n_features:

 index = randrange(len(dataset[0])-1)

 if index not in features:

 features.append(index)

 for index in features:

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

node=

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

Now, we will use subspace bagging for the
same dataset:

Test the random forest algorithm

seed(1)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

dataset_new = []

for row in dataset:

 dataset_new.append([row[i] for i in

range(1,len(row))])

dataset = dataset_new

evaluate algorithm

n_folds = 5

max_depth = 5

min_size = 1

sample_size = 0.1

n_features = 10

for n_trees in [5, 25,50]:

 scores = evaluate_algorithm(dataset,

random_forest, n_folds, max_depth, min_size,

sample_size,

n_trees, n_features)

 print('Trees: %d' % n_trees)

 print('Scores: %s' % scores)

 print('Mean Accuracy: %.3f%%' %

(sum(scores)/float(len(scores))))

We will use 5-fold validation using decision
trees with depth 5; the subsample size will be
10% of the number of instances. As we are
using attribute bagging, we will limit the
number of features to 10. These features will
be selected randomly from the created
sample. We will create a forest of 5, 25, and 50
trees; all helper functions will remain the
same except getNode() without subspace
selection. After executing the code, we will
get:

Trees: 5

Scores: [65.85365853658537, 78.04878048780488,

60.97560975609756, 65.85365853658537,

68.29268292682927]

Mean Accuracy: 67.805%

Trees: 25

Scores: [70.73170731707317, 68.29268292682927,

75.60975609756098, 60.97560975609756,

75.60975609756098]

Mean Accuracy: 70.244%

Trees: 50

Scores: [75.60975609756098, 82.92682926829268,

75.60975609756098, 82.92682926829268,

68.29268292682927]

Mean Accuracy: 77.073%

Can you see that! What an improvement we
have got in the classification accuracy! Let's
feed the data into a table:

SN Trees Mean accuracy without bagging

1 5 65.85%

2 25 71.707%

3 50 70.244%

Table 4.1: Accuracy difference – bagged subspace versus all
features

The preceding table shows a clear difference
in accuracy by two different methods; if we
use more number of trees with subspace

bagging, we get a significant improvement in
the classification accuracy.

Random subspace can be used in any bagging
or boosting algorithm. In the following
sections, we will see how to use it with the
KNN algorithm to get a generalized
predictor.

KNN classification
We have used decision trees for classification
purposes earlier and have seen their practical
applications, which were quiet impressive.
Now, it's time to move ahead and add one
more simple, yet very powerful, tool to our
tool set for classification of data. KNN
algorithm, also known as KNN, is widely
used in the machine learning community. It is
a non-parametric algorithm; that means it
doesn't learn any underlying distributions of
the dataset. It is originally derived from the k-
means clustering algorithm, which is another
very popular algorithm for unsupervised
classification of data. In k-means clustering,
similarity is the criteria to create clusters out
of data. The procedure of the k-means
algorithm is quiet simple:

1. Choose random values (equal to the
desired number of clusters) out of our
dataset; for example, x and y are two

values.
2. Find the similarity between the chosen

values (x and y) and each instance of the
dataset using a distance metric. You will
get two distance vectors, one for x and
another for y.

3. Put all the instances that have less
distance from x in the x-cluster, and put
others in the y-cluster.

4. Now, find the mean values of both the
clusters and replace them with x and y.

5. Repeat steps 3 and 4 until the distance
metric reaches a very small value.

Figure 4.2 Process of K-means clustering

The preceding figure shows the process of
clustering. So, how is it really extended to the
KNN algorithm? To know this, first we will
take a walk through the KNN algorithm. As
we have seen in the first step of k-means
clustering, we choose some random values to
make clusters out of data using the distance
metric. Here, we are going to do the same,
except that those values (cluster centers) will
not be chosen randomly. The following will
be the procedure:

1. As we are currently working with a
supervised learning algorithm, we will
provide data with known labels to the
algorithm

2. Try to find the similarity between the
unseen instance and known data using a
distance metric, and get the most similar
k number of instance's label; these
instances are known as nearest
neighbors

3. After getting the nearest neighbors, we

can get the label with the highest
number, which will be the winner

The following figure shows the classification
using KNN algorithm:

Figure 4.3: Classification using KNN algorithm.

KNN is known as a competitive learning
algorithm, as it creates competition between
instances to reach the final prediction. When
we perform a similarity check between data
instances, it causes each data instance to
compete to win, or be most similar to a given
unseen data instance, and contribute to a
prediction.

KNN is also known as the lazy learning
algorithm. Lazy learning refers to the fact that
the algorithm does not build a model until the
time a prediction is required. It is lazy
because it only does work at the last second.
This has the benefit of including only data
that is relevant to the unseen data, called a
localized model. A disadvantage is that it can
be computationally expensive to repeat the
same or similar searches over larger training
datasets.

So, as we always do, we will implement this
algorithm in Python using the preceding
steps, and then we will use it for a practical
application to build our concepts stronger. So,
let's start with a simple example for a toy
dataset:

SN F1 F2 F3 F4 Class

1 5.1 3.5 1.4 0.2 1

2 4.9 3.0 1.4 0.2 1

3 4.7 3.2 1.3 0.2 1

4 4.6 3.1 1.5 0.2 1

5 5.0 3.6 1.4 0.2 1

6 7.0 3.2 4.7 1.4 2

7 6.4 6.2 4.5 1.5 2

8 6.9 3.1 4.9 1.5 2

9 5.5 2.3 4.0 1.3 2

10 6.5 2.8 4.6 1.5 2

11
6.3 3.3 6.0 2.5 3

12 5.8 2.7 5.1 1.9 3

13 7.1 3.0 5.9 2.1 3

14 6.3 2.9 5.6 1.8 3

15 6.5 3.0 5.8 2.2 3

Table 4.2: Toy dataset

The preceding dataset has been cropped from
the original IRIS classification dataset; there
are 150 instances available in the original
dataset with four attributes and three classes.
We will create a KNN classifier using the
preceding dataset to classify unknown
instances.

As we know, the heart of the algorithm is the

similarity metric, which is used to get nearest
neighbors. There are many distance metrics
available in the literature such as Euclidean
distance (mean-based), city block distance
(median-based), Mahalanobis distance
(covariance-based), and so on. The Euclidean
distance metric is the simplest and a very
useful distant metric, and we will use it to
find similarity between instances. The
formula of Euclidean distance is:

Where p and q are input instances and p1 and
q1 the elements of instances (in our case,
feature values). To calculate the Euclidean
distance between two instances, we will
perform element-wise squared difference
(that is, subtraction between feature values)
to get a non-zero value, and then we will just
sum up all of the differences and get the

square root of the summed value. This is also
known as sum of squared error.

We will implement a Python function to
calculate the Euclidean distance metric; the
code listing will be as follows:

def DistanceMetric(instance1, instance2,

isClass=None):

 #If Class variable is in the instance

 if isClass:

 length = len(instance1)-1

 else:

 length = len(instance1)

 #Initialize variable to store distance

 distance = 0

 #Lets run a loop to calculate element wise

differences

 for x in range(length):

 #Euclidean distance

 distance += pow((instance1[x] -

instance2[x]), 2)

 return math.sqrt(distance)

The preceding function will calculate the
Euclidean distance between two vectors.

Let's test this function for a simple array of
three values:

data1 = [1, 3, 2]

data2 = [3, 3, 2]

distance = DistanceMetric(data1, data2)

print('Euclidean Distance is : %.2f'%

(distance))

After execution:

Euclidean Distance is: 2.00

Good, it's working! So, the first and
important part of our code is completed. The
next thing is to get neighbors using this
distance, so our function getNeighbors goes like
this:

import operator

def getNeighbors(trainingSet, testInstance, k):

 #Create a list variable to store distances

between test and

 #training instance.

 distances = []

 #Get distance between each instance in the

training set and the

 #test instance.

 for x in range(len(trainingSet)):

 #As we will have class variable in the

training set

 isClass will be true

 dist = DistanceMetric(testInstance,

trainingSet[x],

 isClass=True)

 #Append the distance of each instance

to the distance list

 distances.append((trainingSet[x],

dist))

 #Sort the distances in ascending order

 distances.sort(key=operator.itemgetter(1))

 #Create a list to store the neighbors

 neighbors = []

 #Run a loop to get k neighbors from the

sorted distances.

 for x in range(k):

 neighbors.append(distances[x][0])

 return neighbors

Let's test our getNeighbors function:

#Test neighbors

trainSet = [[2, 2, 2, 'a'],[3, 3, 3, 'a'], [4,

4, 4, 'b'],[6, 6, 6, 'b']]

testInstance = [5, 5, 5]

k = 2

neighbors = getNeighbors(trainSet,

testInstance, k)

print(neighbors)

After execution:

[[4, 4, 4, 'b'], [6, 6, 6, 'b']]

Yup, it's working! Now that we have located
the most similar neighbors for a test instance,
the next task is to get a predicted class based
on these neighbors.

We can do this by allowing each neighbor to
vote for their class attribute and taking the
majority vote as the prediction.

The following function does work to get the
majority voted response from a number of
neighbors. It assumes that the class is the last
attribute for each neighbor:

import operator

def getPrediction(neighbors):

 #Create a dictionary variable to store

votes from the neighbors

 #We will use class attribute as the

dictionary keys and their

 #occurrence as key value.

 classVotes = {}

 #Go to each neighbor and take the vote for

the class

 for x in range(len(neighbors)):

 #Get the class value of the neighbor

 response = neighbors[x][-1]

 #Create class key if its not there;

 #If class key is in the dictionary

increase it by one.

 if response in classVotes:

 classVotes[response] += 1

 else:

 classVotes[response] = 1

 #Sort the dictionary keys on the basis of

key values in descending order

 sortedVotes =

sorted(classVotes.iteritems(),

key=operator.itemgetter(1),

 reverse=True)

 #Return the key name (class) with the

highest value

 return sortedVotes[0][0]

Now we have all of the functions needed to
test the KNN performance on our toy dataset.
So, let's start with this:

#Lets create our toy dataset of iris flower

classification.

dataset = [[5.1, 3.5, 1.4, 0.2, 1],

 [4.9, 3.0, 1.4, 0.2, 1],

 [4.7, 3.2, 1.3, 0.2, 1],

 [4.6, 3.1, 1.5, 0.2, 1],

 [5.0, 3.6, 1.4, 0.2, 1],

 [7.0, 3.2, 4.7, 1.4, 2],

 [6.4, 6.2, 4.5, 1.5, 2],

 [6.9, 3.1, 4.9, 1.5, 2],

 [5.5, 2.3, 4.0, 1.3, 2],

 [6.5, 2.8, 4.6, 1.5, 2],

 [6.3, 3.3, 6.0, 2.5, 3],

 [5.8, 2.7, 5.1, 1.9, 3],

 [7.1, 3.0, 5.9, 2.1, 3],

 [6.3, 2.9, 5.6, 1.8, 3],

 [6.5, 3.0, 5.8, 2.2, 3]]

#Lets put our test instance.

testInstance=[4.8,3.1,3.0,1.3,1]

#Now lets find out 3 neighbors for our test

instance using getNeighbor

k = 3

neighbors = getNeighbors(dataset, testInstance,

k)

#Print neighbors

print(neighbors)

[[5.5, 2.3, 4.0, 1.3, 2], [4.6, 3.1, 1.5, 0.2,

1], [4.9, 3.0, 1.4, 0.2, 1]]

If you look closer, you will notice that the
class attribute of the first neighbor is 2 while
the other two neighbors are of class 1; this is
the place where we will require
the getPrediction function, where we will have
voting for each class:

#Get the class prediction out of neighbors

prediction = getPrediction(neighbors)

#Print prediction

print("Predicted class for the test instance

is: %d"%prediction)

Predicted class for the test instance is: 1

It's working perfectly!

So, as always, it's time to test our algorithm
on a practical dataset. As we always try to
cover a practical application from a different
field, this time, we will apply our
implemented algorithm to
the cyberworld field. Yes we will try to apply
our algorithm for a cybersecurity element—
spam classification!!

KNN for spam
filtering
It is impossible to tell exactly who was the
first one to come upon a simple idea that if
you send out an advertisement to millions of
people, then at least one person will react to it
no matter what the proposal is. E-mail
provides the perfect way to send these
millions of advertisements at no cost for the
sender, and this unfortunate fact is nowadays
extensively exploited by several
organizations. As a result, the mailboxes of
millions of people get cluttered with all this
so-called unsolicited bulk e-mail, also known
as spam or junk mail. Being incredibly
cheap to send, spam causes a lot of trouble to
the internet community. Large amounts of
spam-traffic between servers cause delays in
deliveries of legitimate e-mail. People with
dial-up internet access have to spend

bandwidth downloading junk mail. Sorting
out unwanted messages takes time and
introduces a risk of deleting important mails
by mistake. Finally, there is quite an amount
of pornographic spam that children should
not be exposed to.

Dataset
We will use a publicly available dataset for
our application; this dataset is available at: htt
ps://archive.ics.uci.edu/ml/datasets/spambase. You can
easily download it and store it in the form of
a .csv file, as we already have functions to
read a .csv file and load the dataset into a
NumPy array (refer to Chapter 3, Random
Forest).

The following is the dataset information as
found on the given web address.

https://archive.ics.uci.edu/ml/datasets/spambase

Dataset information
The spam concept is diverse: advertisements
for products/web sites, make money fast
schemes, chain letters, pornography, and so
on.

Our collection of spam e-mails came from
our postmaster and individuals who had filed
spam. Our collection of non-spam e-mails
came from filed work and personal e-mails,
and hence the word george and the area code
650 are indicators of non-spam. These are
useful when constructing a personalized spam
filter. One would either have to blind such
non-spam indicators or get a very wide
collection of non-spam to generate a general-
purpose spam filter.

Attribute
information
You can get all of the available information
on the preceding link. I will be sharing only
basic information about the dataset. There are
57 attributes in the dataset; each attribute
signifies frequency of that word occuring in
the spam or non-spam emails. For example,
in a spam mail, there are certain words that
have more occurrences such as money, rich,
hot, nearby, business, and so on. The
following is a snapshot of the attribute
names:

word_freq_order: continuous.

word_freq_mail: continuous.

word_freq_receive: continuous.

word_freq_will: continuous.

word_freq_people: continuous.

word_freq_report: continuous.

word_freq_addresses: continuous.

word_freq_free: continuous.

word_freq_business: continuous.

word_freq_email: continuous.

On the left, attribute names are mentioned,
and on the right is the type (continuous,
discrete, and so on).

There are 2,906 instances in the dataset where
the last instance has an incomplete set of
attributes, so we will keep an eye on it when
we perform our calculation.

We have written most of the functions we
require in this example; if we add anything
new, we will discuss it. So, let's start with
loading our dataset:

#Read CSV file

dataName = 'spamData.csv'

#Use function load_csv from chapter 3

dataset = load_csv(dataName)

#Create an empty list to store the dataset

dataset_new = []

#We will remove incomplete instance from the

dataset

for i in range(len(dataset)-1):

 dataset_new.append(dataset[i])

dataset = dataset_new

#Use function str_column_to_float from chapter

3 to convert string values to

float

from utilityFunctions import

str_column_to_float

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset,

i,len(dataset))

#Split train and test dataset using function

getTrainTestData

#We will use 80% of the dataset as training set

and rest for testing

train,test = getTrainTestData(dataset,0.8)

#Create empty list to store predictions and

actual output

testPredictions=[]

testActual=[]

#We will choose 3 nearest neighbor

k = 3

#Get prediction for each test instance and

store them into the list

for i in range(0,len(test)):

 test_instance = test[i]

 neighbors = getNeighbors(train,

test_instance, k)

 pred = getPrediction(neighbors)

 testActual.append(test_instance[-1])

 testPredictions.append(pred)

 print ("Actual: %s Predicted: %s"%

(test_instance[-1],pred))

#Use accurcay_metric function to evaluate our

results

accuracy =

accuracy_metric(testActual,testPredictions)

#Print accuracy

print("Accuracy of the classification:

%0.2f"%accuracy)

After execution of the preceding code, we

will get:

Accuracy of the classification: 79.21

So, we are getting almost 80% classification
accuracy! Don't be sad; it’s not that bad! In
spam classification, we can't go with a zero
tolerance policy, because if we do that, it may
put many useful e-mails into spam classes,
and we don’t want that. But yes, we can
improve it. How? Simple. If you are not
getting enough accuracy with this classifier,
change it! Yes, because non-parametric
classifiers are pretty straightforward. They do
not make any assumptions on the training
data. They do not learn any distribution
underlying the dataset, and that's why they
are easy to understand and easy to implement.
If we want to get a further enhancement in
the performance of the classifier, we have to
go for a complex one. SVMs perform quite a
lot better with spam classification. We will
cover SVMs in the later chapters; we will
discuss this there.

But wait! Why can't we apply subspace

bagging to our classifier and create an
ensemble of multiple KNNs? Yes, we are
going to do the same for the same application
with the same dataset, but now we are going
to use the power of ensembles in our
algorithm. And let’s see whether we can
improve the performance of the current KNN.

KNN bagging with
random subspaces
As you know, bagging can be implemented in
the following way:

1. Create samples with replacement from
the training set

2. Apply random subspace (limiting the
number of features to train)

3. For each sample, create one classifier
4. At the time of testing, use voting from

each classifier to get a prediction

Let's start with modifying DistanceMetric() for a
subspace bagging implementation:

from random import randrange

def DistanceMetricBagged(instance1,

instance2,n_features, isClass=None):

 #If Class variable is in the instance

 if isClass:

 length = len(instance1)-1

 else:

 length = len(instance1)

 #Initialize variable to store distance

 distance = 0

 features = list()

 #Select random features to apply subspace

bagging

 while len(features) < n_features:

 index = randrange(len(dataset[0])-1)

 if index not in features:

 features.append(index)

 #Lets run a loop to calculate element wise

differences for the selected

features only.

 for x in features:

 #Euclidean distance

 distance += pow((instance1[x] -

instance2[x]), 2)

 return math.sqrt(distance)

Now we have modified the distance function;
we will make changes to getNeighbors() too so
that we can call DistanceMetricBagged() from
there:

def getNeighborsBagged(trainingSet,

testInstance, k,n_features):

 #Create a list variable to store distances

between test and training instance.

 distances = []

 #Get distance between each instance in the

training set and the test

instance.

 for x in range(len(trainingSet)):

 #As we will have class variable in the

training set isClass will

 be true

 dist =

DistanceMetricBagged(testInstance,

trainingSet[x],n_features,isClass=True)

 #Append the distance of each instance

to the distance list

 distances.append((trainingSet[x],

dist))

 #Sort the distances in ascending order

 distances.sort(key=operator.itemgetter(1))

 #Create a list to store the neighbors

 neighbors = []

 #Run a loop to get k neighbors from the

sorted distances.

 for x in range(k):

 neighbors.append(distances[x][0])

 return neighbors

So we are ready to use bagging; let's start
with it. The following code block will first
create random samples of a given size from
the training set and then create a single
classifier for each sample. At testing time, we
will get a vote from each classifier to classify
an instance:

import math

import operator

from Chapter_03.DecisionTree_CART_RF import

load_csv, getTrainTestData, accuracy_metric,

str_column_to_float

import numpy as np

#Read CSV file

dataName = 'spamData.csv'

#Use function load_csv from chapter 3

dataset = load_csv(dataName)

#Create an empty list to store the dataset

dataset_new = []

#We will remove incomplete instance from the

dataset

for i in range(len(dataset)-1):

 dataset_new.append(dataset[i])

dataset = dataset_new

#Use function str_column_to_float from chapter

3 to convert string values to float

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset, i)

#Split train and test dataset using function

getTrainTestData

#We will use 80% of the dataset as training set

and rest for testing

train,test = getTrainTestData(dataset,0.8)

#Create empty list to store predictions and

actual output

testPredictions=[]

testActual=[]

#Select number of neighbors for each classifier

k = 7

#Select sample size

sample_size = 500

#Select number of random features

n_features = 20

#Calculate number of classifier on the basis of

number of samples.

n_classifier = np.uint8(len(train)/sample_size)

#Get prediction for each test instance and

store them into the list

for i in range(0,len(test)):

 predictions = []

 #Run loop for each sample

 for cl in range(1,n_classifier):

 #Randomly shuffle training set and

create sample out of it

 np.random.shuffle(train)

 sample = [train[row] for row in

range(sample_size)]

 #Pick test instance

 test_instance = test[i]

 #Get neighbors and prediction on the

basis of neighbor

 neighbors = getNeighborsBagged(sample,

test_instance,

 k,n_features)

 pred = getPrediction(neighbors)

 #Append prediction against each sample

with random features

 predictions.append(pred)

 #Get final prediction using majority voting

from each classifier

 fin_pred = max(set(predictions),

key=predictions.count)

 testActual.append(test_instance[-1])

 testPredictions.append(fin_pred)

 print ("Actual: %s Predicted: %s"%

(test_instance[-1],pred))

After executing the preceding code, we will
get:

Actual: 1 Predicted: 1

Actual: 1 Predicted: 1

Actual: 0 Predicted: 1

.

.

.

Actual: 1 Predicted: 0

Actual: 1 Predicted: 1

Actual: 1 Predicted: 1

Actual: 0 Predicted: 0

Accuracy of the classification: 84.71

Can you see that!!! We have got an accuracy
of 85% over 79%. Do you know what a
significant improvement we have done?

We have 20% of the dataset as testing set,
which is equal to 582 instances. Earlier, we
were getting an accuracy of 79%, which is
about 466 correct predictions out of 582.
Now, after using ensembles, we are getting
an accuracy of almost 85%, which is about
495 correct predictions. This is an
improvement of 29 more correct predictions
than simple KNN.

Summary
So, you saw how bagging can improve the
classification accuracy of a simple classifier.
We learned about random subspaces in detail.
We saw how this method can improve the
results when we use ensemble methods. We
also worked with the KNN algorithm and its
practical applications, and improved our
classification accuracy using subspace
bagging with KNN for spam classification.

Now you guys have a good understanding of
bagging ensembles as we have used it with
three to four different practical applications
with code implementation. This book will
later cover another important concept of
ensemble methods, known as boosting. We
will start boosting from the next chapter; until
then, you can try our implemented bagging
algorithm for more practical datasets and
improve your understanding of the data
science field.

AdaBoost Classifier
Hey folks, we have seen in previous chapters
how a classifier works, how to practically
implement a classifier in Python, and how to
use many such classifiers to get higher
prediction accuracy. But did you notice one
important thing there? Our classifiers were
not communicating! By communication, I
mean that our classifiers were working
independent of each other to get the
prediction. So, I am raising another question
for you. What if our classifiers start sharing
information together? Can it help us get more
optimized results in the end? In this section of
the book, we are going to look at this aspect,
where we will try to combine the different
classifiers with information sharing.

Boosting
Do you remember those kids from
kindergarten (from Chapter 4, Random
Subspace and KNN Bagging) who helped us
create a random subsample algorithm? We
are going to take their help again, but this
time in a different way.

Do you remember the last time we went to
the city zoo with the kids and told them to
remember the animals? Later we performed a
memory test on them to check how many
animals they learned about. Here is the brief
summary:

We have a bunch of kids from kindergarten.
We take them to the city zoo and show them
different animals, mammals, birds, reptiles
and so on. We tell them to remember the
animals. After visiting the zoo, we call each
child individually. We show them different
pictures of animals and ask them to recognize

whether it is a picture of a mammal or a
reptile. Of course, we will tell them the basic
difference between mammals and reptiles.

 Do you notice that we have advanced the
level of complexity this time? Earlier, we just
asked the names of the animals they had seen
in the zoo. Now we are asking them to divide
their pictures into mammals and reptiles. We
know we cannot expect 100% correct
classifications from the kids; we can expect
an average of 50% correct classifications.
What do you think? Is it sufficient or can they
improve? I will tell you the answer, but first
let's think about the situation:

As we know, each child is capable of
identifying at least 50% of the animals
as mammals
Can we use one child's wrong
identification to improve the
identification from the next child?
Can we somehow force their minds to
concentrate more on those animals that
have been incorrectly identified?

Now, can you guess my solution for getting
the best results in this scenario? I will suggest
that you use chocolates for this. Chocolates!!
Really! Repeatedly use chocolates and you
will get the best identification from them.
How? Let's see.

Let's pick a child and show him/her some
pictures of mammals and reptiles for
identification. We will show four mammals
(elephant, deer, giraffe, and tiger) and four
reptiles/amphibians (crocodile, frog, python,
and turtle);

So we keep eight images in front of each
child, and yes we keep one chocolate with
each picture! Why? Here is the trick my
friends: whenever a child predict an animal's
category correctly, he/she can take the
chocolate placed before the picture, but if
he/she predicts wrong, the chocolate will
stay in its place.

Figure 5.1: Animal classification

Now call the first child and ask him his
predictions; suppose he picks the mammals
and reptiles as follows:

Animal Class

Elephant Mammal

Deer Reptile

Turtle Reptile

Tiger Mammal

Python Reptile

Frog Mammal

Giraffe Mammal

Crocodile Mammal

 Table 5.1

Figure 5.2: First child's prediction (weak learner)

As you can see in the previous figure, he
predicted three animals wrongly so he has to
leave three chocolates in front of the pictures.

It's time to call the next kid. When he reaches
there, he sees chocolates first (HAHA! Of
course, isn’t it obvious?). So he knows that
someone put these three animals in the wrong
category. He puts in more effort for those
three animals and puts them in the correct
class, but he also makes wrong predictions

for some other animals:

Animal Class

Elephant Mammal

Deer Mammal

Turtle Reptile

Tiger Mammal

Python Mammal

Frog Reptile

Giraffe Mammal

Crocodile Mammal

Table 5.2: Error made by first kid

Figure 5.3: Second child's prediction (second weak learner)

He placed crocodile and python in the wrong
category. This time, we want the next child to
make more effort to get the crocodile into the
correct category, so we will put one more
chocolate in front of the crocodile picture.
There is already one chocolate for the python.

Let's call the third child. He will look at the
picture of the crocodile with two chocolates
and the one chocolate for the python. He too
will know that these two pictures were
classified wrongly, so he will make the
correct predictions for those two. As we

know, he will also make some wrong
predictions, as shown in the following table:

Animal Class

Elephant Mammal

Deer Mammal

Turtle Mammal

Tiger Mammal

Python Reptile

Frog Mammal

Giraffe Mammal

Crocodile Reptile

Table 5.3: Error made by the third child

Figure 5.4: Prediction by the third child (third weak learner)

 What do you think we have achieved in the
whole process? Now let's just combine the
predictions of all three of them and we will
get all eight predictions correct! Yes, we will
get this because, as you have seen in the
previous analyses, each child cares about the
animal that has chocolates in front of it. This
forces them to make a correct prediction as
we are working with a two-class problem.

 What the kids have done in this process is
known as boosting!! Yes, boosting is the

process where you put multiple weak learners
in a series. One learner's output will be the
input of the next learner, so the next learner is
boosted by the current one’s error. The
current classifier will take into account the
error made by the previous classifier and this
error will force it to learn from the previous
one's mistakes. We can get a better
understanding from the following figure. This
is the same figure from Chapter 1, Introduction
to Ensemble Machine Learning, where we
discussed boosting ensemble methods:

Figure 5.5: Boosting ensemble algorithm

So you can see and believe me! Our
kindergarden kids have done the same thing.
If you analyze the mammal versus reptile
problem you will come to know that we were
working with a binary class problem, where
we have used multiple weak learners (our
kindergarten kids) one after another. When

the classifier-1 (child -1) makes a wrong
prediction, we have to leave the chocolate
their this chocolate is nothing but the weights
which forces next classifier to make more
effort on wrong predicted instances. The
process of boosting can be understood via the
following example more clearly.

We will understand the whole procedure with
the following problem. Suppose we have
some positive and negative instances in a
box, and these instances cannot be separated
with a simple classifier, as shown in the
following figure:

Figure 5.6: Classification of a nonlinear problem

Box 1: You can see that we have
assigned equal weights to each data point and
applied a decision stump to classify them as +
(plus) or – (minus). The decision stump (D1)
has generated a vertical line on the left to
classify the data points. We see that this
vertical line has incorrectly predicted three +
(plus) as – (minus). In such a case,
we'll assign higher weights to these three +
(pluses) and apply another decision stump:

Figure 5.7: First decision boundary (first weak learner)

Box 2: Here, you can see that the size of three
incorrectly predicted + (pluses) is bigger
compared to rest of the data points. In this
case, the second decision stump (D2) will try

to predict them correctly. Now, a vertical line
(D2) at the right-hand side of this box has
classified three misclassified + (pluses)
correctly. But again, it has
caused misclassification errors, this time with
three - (minuses). So again we will assign a
higher weight to the three – (minuses) and
apply another decision stump:

Figure 5.8: Second decision boundary (second weak learner)

Box 3: Here, the three – (minuses) are given
higher weights. A decision stump (D3) is
applied to predict these misclassified
observations correctly. This time, a horizontal
line is generated to classify + (plus) and –
(minus) based on higher weights of

misclassified observation.

Figure 5.9: Third decision boundary (Third weak learner)

Box 4: Here, we have combined D1, D2, and
D3 to form a strong prediction having a
complex rule compared to an individual weak
learner. You can see that this algorithm has
classified these observations quite well
compared to any individual weak learner.

Figure 5.10: Combined decision boundary (ensemble of
weak learners)

Adaptive Boosting (AdaBoost) works on a
similar method as discussed before. It fits a
sequence of weak learners on different pieces
of weighted training data. It starts by
predicting the original dataset and gives equal
weights to each observation. If the prediction
is incorrect using the first learner, then it
gives a higher weight to that observation.
Being an iterative process, it continues to add
learner(s) until a limit is reached in the
number of models or accuracy.

AdaBoost in a
nutshell
Through the previous example, you have got
a basic introduction to the AdaBoost
algorithm and it's time to see its practicality.
Let's get much deeper into its math and see
why this algorithm works well—let's get into
the algorithm itself.

AdaBoost is best used to boost the
performance of decision trees on binary
classification problems. AdaBoost was
originally called AdaBoost.M1 by the
authors of the technique, Freund and
Schapire. More recently, it may be referred
to as discrete AdaBoost because it is used for
classification rather than regression.
AdaBoost can be used to boost the
performance of any machine learning
algorithm. It is best used with weak learners.
These are models that achieve accuracy just

above a random chance on a classification
problem.

The most suited and therefore most common
algorithm used with AdaBoost is decision
trees with one level. Because these trees are
so short and only contain one decision for
classification, they are often called decision
stumps.

So, the following will be the flowchart of our
algorithm development:

Figure 5.11: AdaBoost algorithm learning

The previous figure shows the following
procedure to get to the final prediction; we
will understand the procedure using our
previous example of kids:

1. Create a model out of data and get the
initial prediction (our little kindergarten
kid)

2. Get the error between the actual and

predicted output
3. On the basis of the error, decide the rate

of the change of weights (similar to
deciding the number of chocolates for
the wrong prediction)

4. Feed the weighted instances to the next
classifier for classification (similar to
showing images with chocolates to the
next kid)

5. Repeat the procedure a number of times,
and create an ensemble of all the
classifiers

You see, it's a simple procedure to get a
powerful AdaBoost classifier! So, the next
question: how do we implement this
algorithm in Python? We will see this in a
moment, but before going for the
implementation, let's see a bit of the
mathematics behind the algorithm.

To learn about AdaBoost, go through a
tutorial written by one of the original authors
of the algorithm, Robert Schapire. The
tutorial is available at http://rob.schapire.net/papers/e

http://rob.schapire.net/papers/explaining-adaboost.pdf

xplaining-adaboost.pdf.

Now we will break the problem into small
pieces to get an in-depth understanding of the
procedure; before moving ahead, let's see
some mathematical terms we will see in the
following explanation.

In the data science world, classification rules
are known as hypotheses; so when we will
say building the hypothesis, it is nothing but
building the classification rule or something
as simple as choosing a threshold to
categorize the data instances. These
hypotheses are denoted by the alphabet h, so
if we want to write a classifier in the form of
a function, we will write it as:

In the previous equation, x is the input and y
is the output of the classifier, so for the ith
instance, the output of the classifier will be in
the following form:

Similarly, if we are working with an
ensemble of multiple classifiers, then for an
instance i, the output of classifier t will be
written as:

In the case of boosting, where the output is
the weighted sum of multiple classifiers, we
can write it in the following form:

The final classifier consists of T weak
classifiers. h_t(x) is the output of weak
classifier t (outputs are limited to -1 or +1).
α_t is the weight applied to classifier t as
determined by AdaBoost. So the final output
is just a linear combination of all the weak
classifiers, and then we make our final
decision simply by looking at the sign of this
sum.

The classifiers are trained one at a time. After

each classifier is trained, we update the
probabilities of each of the training examples
that appear in the training set for the next
classifier.

The first classifier (t = 1) is trained with
equal probability given to all training
examples. After it’s trained, we compute the
output weight (alpha) for that classifier:

The out put weight, α_t, is fairly
straightforward. It's based on the classifier's
error rate, ε_t. ε_t is just the number of
misclassifications over the training set
divided by the training set size.

Here's a plot of what α_t will look like for
classifiers with different error rates:

Figure 5.12: Alpha versus Error Rate

There are three bits of intuition from this
graph:

1. The classifier weight grows
exponentially as the error approaches
zero. Better classifiers are given
exponentially more weight.

2. The classifier weight is zero if the error
rate is 0.5. A classifier with 50%
accuracy is no better than random
guessing, so we ignore it.

3. The classifier weight grows
exponentially negative as the error
approaches one. We give a negative
weight to classifiers with worse than
50% accuracy.

Whatever that classifier says, do the
opposite!

After computing the alpha for the first
classifier, we update the training example
weights using the following formula:

The variable is a vector of weights, with
one weight for each training example in the
training set. i is the training example number.
This equation shows you how to update the
weight for the ith training example.

The paper describes as a distribution. This
just means that each weight D(i) represents
the probability that the training example i will
be selected as part of the training set.

To make it a distribution, all of these
probabilities should add up to 1. To ensure
this, we normalize the weights by dividing
each of them by the sum of all the weights,
. So, for example, if all of the calculated
weights add up to 12.2, then we divide each
of the weights by 12.2 so that they sum up to
1.0 instead.

This vector is updated for each new weak
classifier that is trained. refers to the
weight vector used when training classifier t.

This equation needs to be evaluated for each
of the training samples i (,). Each weight
from the previous training round is going to
be scaled up or down by this exponential
term.

To understand how this exponential term
behaves, let's first look at how exp(x)
behaves:

Figure 5.13: x vs exponent of x

The function exp(x) will return a fraction for
negative values of x, and a value greater than
1 for positive values of x. So the weight for
the training sample i will be either increased
or decreased depending on the final sign of
the term . For binary classifiers,
whose output is constrained to either -1 or
+1, the terms y and h(x) only contribute to the
sign and not the magnitude.

 is the correct output for the training
example i, and is the predicted output

by classifier t on this training example. If the
predicted and actual output agree,
 will always be +1 (either 1 * 1 or -1 * -1). If
they disagree, will be negative.

Ultimately, misclassifications by a classifier
with a positive alpha will cause this training
example to be given a larger weight, and vice
versa.

Note that by including an alpha in this term,
we are also incorporating the classifier's
effectiveness into consideration when
updating the weights. If a weak classifier
misclassifies an input, we don't take that as
seriously as a strong classifier's mistake.

So, after completing the preceding procedure,
we can predict output of a test instance in the
following manner:

Figure 5.14: Testing the AdaBoost classifier

Alphas are working as the weights of the
classifier; if the classifier has a lesser error
rate, then the alpha will be more. So we will
multiply the predicted output of the classifier

with the alpha value that we have calculated
during the training procedure. At the end,
after getting all of the weighted predictions,
we will sum them up to get the final
prediction.

So now, enough about the working procedure
of an AdaBoost classifier! It's time for action.
We will implement all the discussions in
Python code to see how it will help us to
create a strong classifier.

So what do we need to implement a
framework of classification? The following
are the ingredients:

First, and most important, is a classifier
that supports the classification of
weighted instances
A function that calculates the weighted
error to calculate the rate of change of
weights, in short, alphas
The final piece of the puzzle will be the
creation of an ensemble of classifiers

So let's start with it, step by step.

Weak classifier
A weak classifier is nothing but a threshold
value that can divide the data into two
classes. Experiments show that the error rate
must be less than 0.5; that is, we should get
an accuracy of the classification more than
50%. Now, why is this known as a weak
classifier? The answer is simple. Because
with a single threshold value, we can’t get a
very high accuracy. So I have a question for
you: how to pick a threshold value that can
assure you maximum accuracy? Did we have
done something like that earlier? Yes we did!
Don't you remember? Gini index! Yes, we
have tested and picked a threshold value for a
perfect split. And we will do the same again;
we will pick a threshold and test whether it
can be our weak classifier or not. Such
threshold values are known as decision
stumps; these are nothing but decision trees
with depth 1:

Figure 5.15: Decision stump (weak learner)

But there is a big difference in the Gini score
calculation for decision stumps in the
AdaBoost method; let's look at the code block
of the previously used Gini score and a bit of
explanation of it.

To find out the Gini score from a dataset, our
input ingredient will be:

Class proportion
The number of instances that belong to a
group

The class proportion can be calculated using
the following formula:

Proportion =

class_value_count/number_of_instances_in_the_group

So for the preceding formula, the total class
proportion for table 1 will be 0.5, and if we
consider two groups of less than 0 and greater
than 0, we will get class proportion 1 for each
group.

The formula for Gini score is:

Gini_index = sum(proportion*(1.0-proportion))

As you can see, we have used class
occurrence to the calculate class probability
or proportion; this tells us how well splits can
be found in the given groups. The code
implementation of the preceding formula is as
follows:

import numpy as np

Calculate the Gini index for a split dataset

def gini_index(groups, class_values):

 #Initialize Gini variable

 gini = 0.0

 #Calculate propertion for each class

 for class_value in class_values:

 #Extract groups

 for group in groups:

 #Number of instance in the group

 size = len(group)

 if size == 0:

 continue

 #Initialize a list to store class index

of the instances

 r = []

 #get class of each instance in the

group

 for row in group:

 r.append(row[-1])

 #Count number of instances belongs

to current class

 class_count = r.count(class_value)

 #Calculate class proportion

 proportion =

class_count/float(size)

 #Calculate Gini index

 gini += (proportion * (1.0 -

proportion))

 return gini

Now, as we have a good understanding of the
concept of AdaBoost classifier, we need to
incorporate weights to calculate the class
proportion so that the created split can reduce
the error made by the previous classifier.
Where do we need to make the change? As
we have seen before, a calculation of
proportion is required to calculate the Gini
score for the given threshold value:

Proportion =

class_value_count/number_of_instances_in_the_group

What we will do is replace these class counts
with the sum of the weights for the given
class. The expression will look like:

Proportion =

class_weights_sum/sum_of_all_the_weights

We will do this to get the weighted class
proportion for the each class. Definitely, we
need to make many changes to the code of
our Gini score calculations. As we need to
include weights in the calculations, we will
put the weights into the dataset itself as a last
column so that the class values will be the
second last column of the dataset. I will
explain the process of weight merging soon.
So the code for Gini calculation for AdaBoost
will look like:

import numpy as np;

def gini_index(groups, class_values):

 #Initialize Gini variable

 gini = 0.0

 #Calculate propertion for each class

 for class_value in class_values:

 #Extract groups

 for group in groups:

 #Number of instance in the group

 size = len(group)

 if size == 0:

 continue

 #Initialize a list to store class

index of the instances

 r = []

 cl = []

 #get class of each instance in the

group

 for row in group:

 r.append(row[-1])#Weight Append

 cl.append(row[-2])#Class Append

 r = np.array(r)

 #Extract Class indexes of the

current class value

 class_index =

np.where(cl==class_value)

 #Initialize a variable to add the

weights of current class

 w_add=0

 #Add the weights of the current

class using class indexes

 for w in class_index[0]:

 w_add+= r[w];

 #Calculate class proportion using

weights

 proportion = w_add/np.sum(r)

 #Calculate Gini index

 gini += (proportion * (1.0 -

proportion))

 return gini

As you can see in the code, we are extracting
class values from the second last column and
corresponding weight values from the last
column. Now let's summarize
the preceding process in the following points:

1. We will get the groups and the class
values at the input.

2. We will loop for each class value and
pick groups one by one.

3. When we get the first group, we will
find the row indexes of the current class
occurrence.

4. Using class indexes, we will extract the
weights for the current class and add
them.

5. To get the proportion of the class, we
will divide the summed weight value by
the sum of the weights of both classes.

6. We will put the proportion into the Gini
index formula and calculate the Gini
index.

7. Repeat the preceding procedure for the
next group and add the values of all Gini
scores together for the given classes.

Return the final Gini.

So once we have got the Gini score of the
given threshold value, we will store it. After
calculating the Gini score for all threshold
values, we will choose the threshold with the
lowest Gini score, as it will give us maximum
split. The following will be the procedure to
select a threshold value:

1. Choose an arbitrary value from the
attribute

2. Use this value as a threshold and create
two groups from the attribute values
such that one group will have values less
than the threshold and other group will
have values greater than or equal to the
threshold

3. Calculate the Gini index for the groups
4. Choose the value that gives the highest

Gini score as the node

We will use the same createSplit() function
that we used in Chapter 3, Random
Forest, which is as follows:

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold and create two groups

out of data set

 if values[attribute]<threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

Now it's time to decide whether the given
threshold is worth becoming a decision stump
or not; we will use the same getNode() function
from Chapter 3, Random Forest, but with some
modifications, because we have changed the
column of the class attribute from last to last
but one:

def getNode(dataset):

 class_values = []

 #Extract unique class values present in the

data set

 for row in dataset:

 class_values.append(row[-2])#Class

values are in the second

 last

column

 class_values = np.unique(class_values)

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=268&action=edit#post_231

 #initialize variables to store gini score,

attribute index and

 split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in

range(len(dataset[0])-2):#leave last two

columns

 for row in dataset:

 #Create the groups

 groups = createSplit(index,

row[index], dataset)

 #Extract gini score for the

threshold

 gini = gini_index(groups,

class_values)

 #If gini score is lower than the

previous one choose and

 return it

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup =

 index, row[index], gini, groups

 print("winner attribute is A%d with value

%.2f gini is:

 %0.2f"%

(winnerAttribute+1,attributeValue,gScore))

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

So we have made some changes to extract
class indexes. Previously we were extracting
class values from the last column, but as we
have appended the weight column in the end,
we need to change the class index. The
second change is to run a loop to extract the
threshold value. This will be up to the second
last column only so that we can choose only
attribute values as the threshold, not the class
or weight values.

Now, as we have a node with the lowest Gini
score, we have to create a decision stump
using this node. As we have discussed earlier,
a decision stump is nothing but a decision
tree with depth equal to one, so we will
modify the function buildTree() from Chapter
3, Random Forest, to get our decision stump,
as follows.

We are going to use the terminalNode() function
from Chapter 3, Random Forest, without any
change:

def terminalNode(group):

 #Get class values

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=268&action=edit#post_231
https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=268&action=edit#post_231

 outcomes = [row[-2] for row in group]

 #Choose maximum occurred class as the

child value of the Node

 return max(set(outcomes),

key=outcomes.count)

Following is function for creating a decision
stump;

def decision_stump(dataset):

 #Get node value with best gini score

 node = getNode(dataset)

 #Separate out the groups from the node and

remove them

 left, right = node['groups']

 del(node['groups'])

 #Check whether there is any element in the

groups or not

 #If there is not any element put the class

value with maximum

 occurence

 if not left or not right:

 node['left'] = node['right'] =

terminalNode(left + right)

 return node

 #Put left group's maximum occur class value

in left branch

 node['left']=terminalNode(left)

 #Put right group's maximum occur class

value in right branch

 node['right'] = terminalNode(right)

 return node

As you can see in the preceding function, we
are first getting the node value and then
creating the left and right branches using the
maximum occurring class value in the
respected group. In the end, our decision
stump will look something like:

{'attribute': 0, 'right': -1.0, 'value': 0.5,

'left': 1.0}

AdaBoost in action
Now it's time to create an AdaBoost classifier
to build our concepts more strongly on the
algorithm. Do you remember the box
problem we had seen in the second example
of the AdaBoost explanation? Well, we will
solve the same problem and create an
AdaBoost classifier to classify the instances
into respected classes.

Let's look at the problem once again.

You can see the box with some blue + and
red - signs; let's assume the + sign instances
are positive instances with class label +1 and
red ones are negative instances with class
label -1:

Figure 5.16: Nonlinear separation problem

First, we need to create these instances using
their location coordinates; in the following
figure, you can see these points. Let's create
an array for the preceding coordinate values
and visualize them on the graph:

Figure 5.17: Nonlinear separation problem

Let's load the dataset in the array:
dataset = [[0.25000, 1.75000, 1.00000],

 [1.25000, 1.75000, -1.00000],

 [0.50000, 1.50000, 1.00000],

 [1.00000, 0.50000, -1.00000],

 [1.25000, 3.50000, 1.00000],

 [1.50000, 4.00000, 1.00000],

 [2.00000, 2.00000, -1.00000],

 [2.50000, 2.50000, 1.00000],

 [3.75000, 3.00000, -1.00000],

 [4.00000, 1.00000, -1.00000]]

The preceding figure is not created in Python;
it's done on octave, another programming
language used by the data science
community. So you can see in there that
points cannot be separated by using just a line
of the plane. It looks like only 10 points are
there, but trust me folks, it's way more
difficult to classify the preceding points with
100% accuracy. For a proof of my point, I
will first apply the classification and
regression trees to segment
the preceding dataset. Then we will go ahead
in the game. We will use CART implemented
in Chapter 3, Random Forest.

Let’s build the tree and see what happens:

tree = build_tree(dataset,5,1)#We will build

the tree for depth 5

pprint.pprint(tree)

pre = []#For storing Prediction

act = []#For storing Actual values

for row in dataset:

 prediction = predict(tree, row)

 pre.append(prediction)

 actual = act.append(row[-1])

acc = accuracy_metric(act, pre)

print('training accuracy: %.2f'%acc)

After execution, we will get the following

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=268&action=edit#post_231

results.

Our tree will look like the following:

{'attribute': 0,

 'left': 1.0,

 'right': {'attribute': 1,

 'left': {'attribute': 0,

 'left': -1.0,

 'right': -1.0,

 'value': 4.0},

 'right': 1.0,

 'value': 3.0},

 'value': 0.5}

The following are the predictions made by
the preceding tree:

Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=-1

 Expected=-1, Got=-1

 Expected=-1, Got=-1

The accuracy of the decision tree
classification is:

training accuracy: 90.00

So, you can see clearly that our tree is

underfitting for this highly nonlinear
classification problem with just 10 points.

We will change the algorithm and apply the
AdaBoost algorithm to create some decision
boundaries to classify our data into two
classes.

Let's start with the implementation of the
component for our AdaBoost algorithm.

We have components for building a decision
stump; now we will implement functions that
are part of the AdaBoost algorithm.

The first function we will need is
computation of the weighted error to decide
the rate of change of the weights; we will add
the getError() function to our code block to
estimate the error of the classification:

def getError(actual,predicted,weights):

 #Initialize the error variable

 error = 0

 #We will store the error of each instance

in a vector

 error_vec=[]

 #Run a loop to calculate error for each

instance

 for i in range(len(actual)):

 diff = predicted[i]!=actual[i]

 #Weights multiplication to the

difference of actual and

 predicted values

 error+= weights[i]*(diff)

 #Append the difference to the error

vector

 error_vec.append(diff)

 return error,error_vec

Now we will need a function to predict the
output of the decision stump we have created;
for this, we will use the same function we
implemented in Chapter 3, Random Forest to
make predictions using a decision tree:

def predict(node, row):

 #Get the node value and check whether the

attribute value is less than or

 equal.

 if row[node['attribute']] <= node['value']:

 #If yes enter into left branch and

check whether it has another node or

 the class value.

 #If there is no node in the branch

 return node['left']

 else:

 return node['right']

We have modified the preceding function by
removing recursion from the code; as we are

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=268&action=edit#post_231

dealing with a decision tree with a depth of
only one, we need not to put any recursion in
the code.

Now let's jump straight into the function
definition, AdaBoostAlgorithm(), in which we will
put all the elements together to create the
classifier:

def AdaBoostAlgorithm(dataset,iterations):

 #Initialize the weights of the size of data

set

 weights =

np.ones(len(dataset),dtype="float32")/len(dataset)

 dataset = np.array(dataset)

 #Add Weights column to the data set(Now

last column will be the weights)

 dataset = np.c_[dataset,weights]

 #Create an empty list to store alpha values

 alphas = []

 #Create a list to add weak

learners(decision stumps)

 weaks = []

 #Lets run the loop for number of

iteration(number of classifiers)

 for itr in range(iterations):

 #Create decision tree from the non

weighted data-set

 ds = decision_stump(dataset)

 #Create a list to store the predictions

of the decision stump

 pred=[]

 #Create a list to store actual outputs

 actual = []

 #Let's predict output for each instance

in the data set

 for row in dataset:

 actual.append(row[-2])

 pred.append(predict(ds, row))

 #Here we will find out difference

between predicted and actual output

 error,error_vec = getError(actual,

pred,weights)

 #If error is equal to 0.5 classifier is

not able to classify the data set

 if error==0.5:

 continue

 eps = sys.float_info.epsilon

 #Let's find out the alpha with the help

of error

 alpha = 0.5 * np.log((1-

error)/(error+eps))

 print("Error: %.3f and alpha: %.3f"%

(error,alpha))

 #Create empty vector to store weight

updates

 w = np.zeros(len(weights))

 # Update the weights using alpha value

 for i in range(len(error_vec)):

 #For wrong prediction increase the

weights

 if error_vec[i]!=0:

 w[i] = weights[i] *

np.exp(alpha)

 #For correct prediction decrease

the weights

 else:

 w[i] = weights[i] * np.exp(-

alpha)

 #Normalize the weights and update

previous weight vector

 weights = w / w.sum()

 #Put the updated weights into the data

set by over-writing previous

 weights

 dataset[:,-1]=weights

 #Append alpha value to the list to used

at the time of testing

 alphas.append(alpha)

 #Append the weak learner to the list

 weaks.append(ds)

 return weaks,alphas

Yes it is a very big code block, but believe
me, there is nothing fancy happening there.
We can summarize the whole code in the
following points:

1. First initialize the instances' weights
with uniform distribution

2. Now create a decision stump and feed
the data instances for prediction

3. Calculate the weighted error using
a weight matrix between actual and
predicted

4. Using the error value, calculate the rate
of change (alpha) for the weights.

5. According to the prediction error, update
the weights

6. Replace the previous weights by the
updated weights

7. Repeat the procedure for the number of
classifiers needed

You see, it's very simple! Now it's time to
apply it to our example.

Let's start with loading our data into the
variable:

dataset = [[0.25000, 1.75000, 1.00000],

 [1.25000, 1.75000, -1.00000],

 [0.50000, 1.50000, 1.00000],

 [1.00000, 0.50000, -1.00000],

 [1.25000, 3.50000, 1.00000],

 [1.50000, 4.00000, 1.00000],

 [2.00000, 2.00000, -1.00000],

 [2.50000, 2.50000, 1.00000],

 [3.75000, 3.00000, -1.00000],

 [4.00000, 1.00000, -1.00000]]

And call the AdaBoostAlgorithm() function; we
will build 9 cascade classifiers to classify our
dataset:

[weaks,alphas] = AdaBoostAlgorithm(dataset,9)

weaks and alphas will be the trained weak
classifiers and their weights; let's see what
happens internally when we call
the preceding function.

First we initialize weights for appending
into dataset using:

weights =

np.ones(len(dataset),dtype="float32")/len(dataset)

Our weights will be uniform for the first
classifier; it will look like:

weights[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1]

Append these weights to dataset:

dataset = np.c_[dataset,weights]

The modified dataset will be look like:

[[0.25 1.75 1. 0.1]

 [1.25 1.75 -1. 0.1]

 [0.5 1.5 1. 0.1]

 [1. 0.5 -1. 0.1]

 [1.25 3.5 1. 0.1]

 [1.5 4. 1. 0.1]

 [2. 2. -1. 0.1]

 [2.5 2.5 1. 0.1]

 [3.75 3. -1. 0.1]

 [4. 1. -1. 0.1]]

Let's get our first decision_stump and see how it
performs:

ds = decision_stump(dataset)

This decision_stump will look like:

{'right': -1.0, 'value': 0.5, 'left': 1.0,

'attribute': 0}

As you can see, the threshold value is 0.5 from
attribute is 0 (column 1), in which the right
branch has a negative class while the left has
a positive class value. Let's see how it will
perform in classifying our dataset:

for row in dataset:

 actual.append(row[-2])

 pred.append(predict(ds, row))

The misclassifications made by our decision

stump will be:

SN Actual Predicted

1 1 1

2 -1 -1

3 1 1

4 -1 -1

5 1 -1

6 1 -1

7 -1 -1

8 1 -1

9 -1 -1

10 -1 -1

Table 5.4 Errors made by the first weak learner

So, the preceding table shows that our weak
learner is predicting three instances wrongly
while seven instances are correct; it's not a
bad prediction considering a single threshold
value.

We have got our first decision boundary,
which will look like this figure, clearly
showing the three wrong predictions of
positive instances:

Figure 5.18: First decision boundary

So let's calculate the error made by the first
classifier and then calculate the rate of
change of weight using the error value:

error,error_vec = getError(actual, pred,

weights)

As weights for each of the instances are the
same this time, they have no effect on error
calculation:

Error between predicted and actual output is:

0.30

Let's calculate alpha:

alpha = 0.5 * np.log((1-error)/(error+eps))

Alpha value for changing the weights is: 0.42

It's time to update the previous weights such
that a wrong prediction should get a higher
weight value compared to a correct
prediction, and we will do this with the
following line:

#For wrong prediction increase the weights

if error_vec[i]!=0:

 w[i] = weights[i] * np.exp(alpha)

#For correct prediction decrease the weights

else:

 w[i] = weights[i] * np.exp(-alpha)

Let's look at the updated weights after the
preceding line after normalization:

SN Actual Predicted Weights

1 1 1

2 -1 -1

3 1 1

4 -1 -1

5 1 -1

6 1 -1

7 -1 -1

8 1 -1

9 -1 -1

10 -1 -1

Table 5.4 Update weights for the next iteration

It looks perfectly fine, as the incorrect
predictions are getting more than double the
weights compared to the correct instances. In
the next step, we will append the updated
weights to the dataset and again get a
decision stump; let's get straight to the new
stump value:

{'value': 2.5, 'left': 1.0, 'attribute': 0,

'right': -1.0}

The new decision stump creates a boundary
as follows:

Figure 5.19: Second decision boundary

Following table shows prediction made by
decision stump:

SN Actual Predicted

1 1 1

2 -1 1

3 1 1

4 -1 1

5 1 1

6 1 1

7 -1 1

8 1 1

9 -1 -1

10 -1 -1

Table 5.5 Error made by the second weak learner

The Error and alpha for the classifier are:

Error: 0.214 and alpha: 0.650

You can see that for a lower error, we are
getting a high alpha value, which forces the
final prediction to be biased to the classifiers
with higher alpha values and lower errors.
This logically makes the correct prediction at
the end.

Now let's take on the updated weights:

SN Actual Predicted Weights

1 1 1 0.04

2 -1 1 0.16

3 1 1 0.04

4 -1 1 0.16

5 1 1 0.10

6 1 1 0.10

7 -1 1 0.16

8 1 1 0.10

9 -1 -1 0.04

10 -1 -1 0.04

Table 5.6: Weight update for next iteration

Again the updates look fine, which indicates
that we are on the right path.

the next decision stump will be:

{'value': 3.0, 'left': -1.0, 'attribute': 1,

'right': 1.0}

The prediction made by the
preceding decision stump is:

SN Actual Predicted

1 1 -1

2 -1 -1

3 1 -1

4 -1 -1

5 1 1

6 1 1

7 -1 -1

8 1 -1

9 -1 -1

10 -1 -1

Table 5.7: Error made by the third weak learner

The Error and alpha value for the classifier are:

Error: 0.197 and alpha: 0.703

Figure 5.20: Third decision boundary

The following is the summary of all nine
classifier statistics:

Classifier 0 stats:

winner attribute is 1 with value 0.50 gini is:

0.47

{'attribute': 0, 'value': 0.5, 'left': 1.0,

'right': -1.0}

Error: 0.300 and alpha: 0.424

Classifier 1 stats:

winner attribute is 1 with value 2.50 gini is:

0.38

{'attribute': 0, 'value': 2.5, 'left': 1.0,

'right': -1.0}

Error: 0.214 and alpha: 0.650

Classifier 2 stats:

winner attribute is 2 with value 3.00 gini is:

0.38

{'attribute': 1, 'value': 3.0, 'left': -1.0,

'right': 1.0}

Error: 0.197 and alpha: 0.703

Classifier 3 stats:

winner attribute is 2 with value 1.00 gini is:

0.40

{'attribute': 1, 'value': 1.0, 'left': -1.0,

'right': 1.0}

Error: 0.236 and alpha: 0.588

Classifier 4 stats:

winner attribute is 1 with value 0.50 gini is:

0.43

{'attribute': 0, 'value': 0.5, 'left': 1.0,

'right': -1.0}

Error: 0.263 and alpha: 0.516

Classifier 5 stats:

winner attribute is 2 with value 1.00 gini is:

0.46

{'attribute': 1, 'value': 1.0, 'left': -1.0,

'right': 1.0}

Error: 0.339 and alpha: 0.334

Classifier 6 stats:

winner attribute is 2 with value 3.00 gini is:

0.47

{'attribute': 1, 'value': 3.0, 'left': -1.0,

'right': 1.0}

Error: 0.331 and alpha: 0.351

Classifier 7 stats:

winner attribute is 1 with value 2.50 gini is:

0.47

{'attribute': 0, 'value': 2.5, 'left': 1.0,

'right': -1.0}

Error: 0.355 and alpha: 0.299

Classifier 8 stats:

winner attribute is 2 with value 2.00 gini is:

0.42

{'attribute': 1, 'value': 2.0, 'left': -1.0,

'right': 1.0}

Error: 0.125 and alpha: 0.971

As you can see in the preceding nodes, some
nodes have repeating node values, but the
error and alphas associated with them are
different, which forces the classifiers towards
different predictions. So don't think that those
classifiers are redundant in the calculations.
Let's see all the boundaries created by the
classifiers:

Figure 5.21: Nth decision boundary

All other boundaries are repeated, so there is
no need to plot them here. Their predictions
will be the same, but due to their different
alpha value, the contributions of their
predictions will vary. For example, if many
of the classifiers with x as the node value are
classifying a point in class 1 with a low

alpha=0.1, and one classifier is classifying
the same point in class -1 with alpha=0.5,
then the weight contribution of the classifier
(with higher) will be more. This causes the
decision boundary to move towards class -1.
This is because classifier with a higher alpha
value shows less error—error is inversely
proportional to the alpha.

This figure shows the final classification
boundary achieved by the algorithm:

Figure 5.22: Final decision Boundary by the ensemble of
weak learners

Let's put all the classifiers together and see
what the final output of the algorithm is; to
evaluate the final output, we will follow the
steps mentioned here:

1. Pick an instance and predict its output
with all the classifiers

2. Multiply the alpha values of the
classifier with the predicted output

3. Sum all the values
4. Choose the sign of the value as the class

label

 We will implement a code block to do the
preceding task; it will look like:

#Make empty lists to store predicted and actual

outputs

prediction=[]

actual = []

#Run a loop to extract each instance from the

data set

for row in dataset:

#Create a list to store predictions from

different classifier for the test

#instance

preds = []

#Feed the instance to different classifiers

for i in range(len(weaks)):

 #Multiply the predicted output with the

alpha value of the classifier

 p = alphas[i]*predict(weaks[i], row)

 #Add the weighted prediction to the list

 preds.append(p)

#Sum up output of all the classifiers and take

their sign as the prediction

final = np.sign(sum(preds))

#Append the final output to the prediction list

and actual output to the actual

#list

prediction.append(final)

actual.append(row[-1])

Now it's time to calculate the accuracy of the
ensemble classifier:

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

So,the output of our classifier is:

Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=1

 Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=1, Got=1

 Expected=-1, Got=-1

 Expected=-1, Got=-1

 Accuracy: 100.00

As you can see, our classifier has dealt with a
highly nonlinear problem with the 100 percent
accuracy. There are very few algorithms
available that can separate the
preceding dataset perfectly into two groups,
and you just have learned one of them.

Application of the
AdaBoost classifier
in face detection
Yup, you have read it right! We are going to
discuss our first computer vision domain
algorithm, and trust me it is one of the most
popular domains in the machine learning
world. So the first question here is: what is
computer vision? In its simplest form,
computer vision is a set of algorithms that are
applied to real-world images to extract
meaningful information from them, such as
object detection in images (finding faces or a
football in an image, or tracking a human in a
video). All these are part of the computer
vision domain, where algorithms give the
power of visualization to the machine; that is
why this field is also known as machine
vision.

So, I think this is enough information
regarding the domain. Now we will discuss a
bit about Images. Images are two-
dimensional matrices with numbers; these
numbers are known as intensity values and
the coordinates of the matrix are known as
pixels. So an image consists of lots of pixels,
which have different intensity values and
form different structures. We can visualize
these through our eyes. So what's the big deal
in here? Maths!!! If we have a matrix with
real data values, we can apply matrix
mathematics to our images, and that's what
we are going to do next in the example.

Face detection using
Haar cascades
Object detection using Haar feature-based
cascade classifiers is an effective object
detection method proposed by Paul Viola and
Michael Jones in their paper Rapid Object
Detection using a Boosted Cascade of Simple
Features in 2001. It is a machine-learning-
based approach where a cascade function is
trained from a lot of positive and negative
images. It is then used to detect objects in
other images.

Here, we will work with face detection.
Initially, the algorithm needs a lot of positive
images (images of faces) and negative images
(images without faces) to train the classifier.
Then we need to extract features from it.
Features are nothing but numerical
information extracted from the images that
can be used to distinguish one image from

another; for example, a histogram
(distribution of intensity values) is one of the
features that can be used to define several
characteristics of an image even without
looking at the image, such as dark or bright
image, the intensity range of the image,
contrast, and so on. We will use Haar features
to detect faces in an image. Here is a figure
showing different Haar features:

Figure 5.23: Haar features

These features are just like the convolution
kernel; to know about convolution, you need
to wait for the following chapters. For a basic
understanding, convolutions can be described
as in the following figure:

Figure 5.24: Process of convolution on image

So we can summarize convolution with these
steps:

1. Pick a pixel location from the image
2. Now crop a sub-image with the selected

pixel as the center from the source
image with the same size as the
convolution kernel

3. Calculate an element-wise product
between the values of the kernel and
sub-image

4. Add the result of the product
5. Put the resultant value into the new

image at the same place where you
picked up the pixel location

Now we are going to do a similar kind of
procedure, but with a slight difference for our
images. Each feature of ours is a single value
obtained by subtracting the sum of the pixels
under the white rectangle from the sum of the
pixels under the black rectangle.

Now, all possible sizes and locations of each
kernel are used to calculate plenty of features.
(Just imagine how much computation it
needs. Even a 24x24 window results in over
160,000 features.) For each feature
calculation, we need to find the sum of the
pixels under the white and black rectangles.
To solve this, we will use the concept of
integral image; we will discuss this concept
very briefly here, as it's not a part of our
context.

Integral image
Integral images are those images in which the
pixel value at any (x,y) location is the sum of
the all pixel values present before the current
pixel. Its use can be understood by the
following example:

Figure 5.25: Image on the left and its integral image on the
right

Let's see how this concept can help reduce
computation time; let us assume a matrix A of
size 5x5 representing an image, as shown

here:

Figure 5.26: Example matrix

Now, let's say we want to calculate the
average intensity over the area highlighted:

Figure 5.27: Region for addition

Normally, you'd do the following:

9 + 1 + 2 + 6 + 0 + 5 + 3 + 6 + 5 = 37

37 / 9 = 4.11

This requires a total of 9 operations.

Doing the same for 100 such operations would
require:

100 * 9 = 900 operations.

Now, let us first make a integral image of the
preceding image:

Figure 5.28: Integral matrix

Making this image required a total of 56
operations.

Again, focus on the highlighted portion:

Figure 5.29: Region for addition

To calculate the avg intensity, all you have to
do is:

(76 - 20) - (24 - 5) = 37

37 / 9 = 4.11

This required a total of 4 operations.

To do this for 100 such operations, we would
require:

56 + 100 * 4 = 456 operations.

For just a hundred operations over a 5x5
matrix, using an integral image requires about
50% less computations. Imagine the
difference it makes for large images and other
such operations.

Creation of an integral image changes other
sum difference operations by almost O(1)
time complexity, thereby decreasing the
number of calculations.

It simplifies the calculation of the sum of
pixels—no matter how large the number of
pixels—to an operation involving just four
pixels. Nice, isn't it? It makes things
superfast.

However, among all of these features we
calculated, most of them are irrelevant. For
example, consider the following image. The
top row shows two good features. The first
feature selected seems to focus on the
property that the region of the eyes is often
darker than the region of the nose and cheeks.
The second feature selected relies on the
property that the eyes are darker than the
bridge of the nose. But the same windows
applying on cheeks or any other part is
irrelevant. So how do we select the best
features out of 160000+ features? It is
achieved by AdaBoost.

To do this, we apply each and every feature
on all the training images. For each feature, it
finds the best threshold that will classify the
faces as positive and negative. Obviously,
there will be errors or misclassifications. We
select the features with the minimum error
rate, which means they are the features that
best classify the face and non-face images.

The process is not as simple as

this. Each image is given an
equal weight in the beginning.
After each classification, the
weights of misclassified images
are increased. Again, the same
process is done. New error rates
are calculated among the new
weights. This process continues
until the required accuracy or
error rate is achieved or the
required number of features is
found.

The final classifier is a weighted sum of these
weak classifiers. It is called weak because it
alone can't classify the image, but together
with others, it forms a strong classifier. The
paper says that even 200 features provide
detection with 95% accuracy. Their final
setup had around 6,000 features. (Imagine a
reduction from 160,000+ to 6000 features.
That is a big gain.)

Figure 5.30: Face detection framework using the Haar
cascade and AdaBoost algorithm

So now, you take an image take each 24x24
window, apply 6,000 features to it, and check
if it is a face or not. Wow! Wow! Isn't this a
little inefficient and time consuming? Yes, it
is. The authors of the algorithm have a good
solution for that.

In an image, most of the image region is non-
face. So it is a better idea to have a simple
method to verify that a window is not a face
region. If it is not, discard it in a single shot.
Don’t process it again. Instead, focus on the
region where there can be a face. This way,
we can find more time to check a possible
face region.

For this, they introduced the concept of a
cascade of classifiers. Instead of applying all
the 6,000 features to a window, we group the
features into different stages of classifiers and
apply one by one (normally first few stages
will contain very few features). If a window
fails in the first stage, discard it. We don’t
consider the remaining features in it. If it
passes, apply the second stage of features and
continue the process. The window that passes
all stages is a face region. How cool is the
plan!!!

The authors' detector had 6,000+ features
with 38 stages, with 1, 10, 25, 25, and 50
features in the first five stages (two features

in the preceding image were actually obtained
as the best two features from AdaBoost).
According to the authors, on average, 10
features out of 6,000+ are evaluated per
subwindow.

So this is a simple, intuitive explanation of
how Viola-Jones face detection works. Read
the paper for more details or check out the
references in the Additional Resources
section.

Implementation
using OpenCV
Open Source Computer Vision (OpenCV)
is a library. Open source means it's free to
download and we can use it to implement
various computer vision algorithms; face
detection is one of them. So let’s see how to
do this.

Here, we will deal with detection. OpenCV
contains many pre-trained classifiers for face,
eyes, smiles, and so on. These XML files are
stored in the opencv/data/haarcascades/ folder.
Let's create a face and eye detector with
OpenCV.

First, we need to load the required XML
classifiers. Then we load our input image (or
video) in grayscale mode:

#So We will load required libraries numpy for

matrix operations

import numpy as np

#Import OpenCV library, in python we can call

it cv2

import cv2

#OpenCV have module cascade classifier which is

based on haar cascade and #Adaboost algorithm,

so we will call direct method.

#First we will load the pre trained classifiers

for frontal face and eye #detection, which are

in the form of xml file.

face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

eye_cascade =

cv2.CascadeClassifier('haarcascade_eye.xml')

#Now let us load an image from the local

directory

img = cv2.imread('sachin.jpg')

#Let's convert the image from color space to

intensity value(Gray Image)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Now we find faces in the image. If they are
found, it returns the positions of detected
faces as Rect(x,y,w,h). Once we get these
locations, we can create an ROI for the face
and apply eye detection to this ROI (since
eyes are always on the face!!!):

#Here we will call the method which will find

the faces in our input image

faces = face_cascade.detectMultiScale(gray,

1.3, 5)

#Lets run a loop to create sub images of faces

from the input image using #cv2.rectangle

function

for (x,y,w,h) in faces:

 img = cv2.rectangle(img,(x,y),(x+w,y+h),

(255,0,0),2)

 roi_gray = gray[y:y+h, x:x+w]

 roi_color = img[y:y+h, x:x+w]

 #Now let’s run the classifier for eyes

detection over detected face

 #windows

 eyes =

eye_cascade.detectMultiScale(roi_gray)

 #the following function will create the

rectangles around the eyes

 for (ex,ey,ew,eh) in eyes:

 cv2.rectangle(roi_color,(ex,ey),

(ex+ew,ey+eh),(0,255,0),2)

#The following Lines will show the detected

face images

cv2.imshow('img',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

The result of the execution:

Figure 5.31: The face detection framework's result

You can get this description at the official
link of the OpenCV (http://opencv-python-tutroals.rea
dthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_dete
ction/py_face_detection.html).

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html

Summary
It looks like we have traveled far on the
journey of AdaBoost classifiers. We started
with a simple example of boosting, in which
our kindergarten kids helped us understand
the concepts of the method. Using the same
concepts, we built a working implementation
of AdaBoost algorithms where our weak
learner was a decision stump. Here I want to
point out to you that the AdaBoost algorithm
has no dependency on the choice of weak
learner. It can be trained with any kind of
algorithm such as support vector machines,
artificial neural networks, our own random
forest, and so on. However, there is only one
requirement: the algorithm must support
weighted inputs to calculate decision
boundaries. Because of this limitation, I
encourage you to use AdaBoost on the scikit-
learn library. As most machine learning
algorithms in scikit-learn support weighted

input instances, you can easily use those
classifiers to create ensembles. Here, we saw
an example implementation of AdaBoost,
which is good to build the concepts behind
the actual algorithm, but I strongly suggest
that you go with scikit-learn's AdaBoost—a
more optimized algorithm for practical
applications.

So, I will say this is it for AdaBoost. We will
learn a new algorithm for boosting in the
following chapter. Till then, goodbye!!

Gradient Boosting
Machines
In the previous chapter, we saw the power of
multiple weak learners that can do magic and
learn nonlinear data. We discussed boosting
and saw how it can be used to solve
extremely complex problems such as face
detection, and we it did quite well. I just want
to repeat the points we followed in the
AdaBoost algorithms before moving ahead:

1. Loading data and weight each instance
equally

2. Training a weak learner (we used
decision stump) on the data

3. Evaluating the errors made by the
classifier and giving more weight to
wrongly classified instances

4. Repeating the procedure from point to
for number of iterations

5. Using the error rate of the weak learner

as the weight of prediction made by the
classifier when learning is complete

The preceding procedure creates multiple
partitions of the dataset and creates decision
boundaries, as follows:

Figure 6.1: AdaBoost classifier boundaries

So, I think you have had enough of your
recall session. Now it is time to ask you a
question, and here it is: what will be your
classifier's output for the following problem?

SN Input Output

1 0.00 0.00

2 1.00 0.05

3 2.00 0.10

4 3.00 0.15

63 62.00 0.10

64 63.00 0.05

65 64.00 0.00

Table 6.1: Nonlinear problem

If we will plot the preceding table, it will look
as follows:

Figure 6.2: Nonlinear problem visualization

I know the first sentence that came to your
mind, what is this, man? Well, don't panic
folks! This is the problem of
regression, where your input may be a
continuous or categorical value, but your
output is always a continuous value. As you
can see in the preceding figure, for x=1, we
get 0.05 as the output, and for x=3, the output
is 0.15. Do you think any classifier that we
have developed can solve this problem? No!
None of our classifiers can solve this

problem... oh! Wait a minute. You people are
always in a hurry! I have told you this is a
problem of regression. Did you hear about
regression earlier? Yes, of course! We
developed classification and regression trees
in Chapter 3, Random Forest.

So, we can solve the preceding problem using
a regression tree (I will come back to this
later) as a weak learner with AdaBoost. In the
case of AdaBoost, our every classifier gives
more attention to those instances that were
wrongly classified by the previous classifier
in the series, so we have actually changed the
sample distribution by giving importance to
certain instances.

Now, we will talk about a different way to get
the attention of a weak learner toward the
error made by the previous weak learner.

Suppose we have trained our first classifier
and got the prediction as follows:

Figure 6.3: Prediction of a classifier

As you can see very clearly, our tree is
underfitting for the problem as it is not able
to reconstruct the output on its own. Now, we
can go with the AdaBoost approach to weigh
more to the miss-classified instances for the
next classifier, but wait! We will do
something different to this; let's look at an
error made by our classifier:

Figure 6.4: Analysis of prediction error

The preceding figure shows the amount of
errors produced by our first classifier. If we
write it in the form of an equation, it should
look as follows:

error = Actual-Predicted

In a more mathematical way, we can write it
as follows:

e = y-f(x)

Where x is the input, f(x) is our classifier,
model y is the actual output, and e is the error
made by the classifier. Now, what if we
rewrite this equation in the following form?

actual = prediction+error

Can you tell me, what happened in
the preceding equation? Well, the preceding
equation says that if the error is 0, then our
actual output will be equal to the predicted
output and our classifier is doing a perfect
job. However, if the predicted value is more
than the actual value, the error will be
negative and we have to subtract the error
from our prediction. Similarly, when the
error is positive, we will need to add it to get
the correct prediction.

So, what if we next add a weak learner to
remember (learn) this error? Let's just add the
next weak learner in the system to do this;
our equation will look as follows:

y = f(x)+h(e)

Then, the error made by this classifier will be
written as follows:

Alternatively, we can write it as follows:

So, an error at nth classifier will be the
difference between the error learned by the
previous classifier and the output of the
current classifier. Similarly, the equation for
the output of nth classifier will be as follows:

According to the preceding equation, the final
prediction of the classifier will be the sum of
all predictions made by the previous
classifiers.

I know that now you are more confused, and
you may be thinking, Why the hell we are
doing all the previous equations? So, for your
information, you have just learned the
concept of Gradient Boosting Machine
(GBM)! Yes, this is it! And believe me, there
is nothing more to it. Oh! Don't you believe
me? Let's break down the method itself.

Gradient Boosting
Machines
In the simplest way, we can say that the
gradient represents the rate of change (or the
amount of change). Yes! This is the simplest
definition of the gradient. It may be a positive
change (positive gradient) or it may be a
negative change (negative gradient). Let's
understand the gradient in brief with the help
of the following example:

Suppose we are traveling in a car on a
mountain, I will not tell you upward or
downward; at point a, we attain a height of
1000 meters and at point b, we reach 1500
meters. However, we have just covered a
distance of 200 meters. Can you tell me what
the rate of change (speed) of our car is and
whether we are moving upward or
downward? Well, the second part of the
question is very funny-we all know upwards,

but how did you know? You just subtract
height one by height two and the difference is
positive, but the first part of the question is
important, so maths gives us the following
way to get rid of it:

Figure 6.5: The explanation of gradient

If we put our numbers in the preceding
formula, we get a difference of heights that is,
500 divided by the difference of distance 200.
So, the slope will be 2.5, which is a positive
gradient. In case of downhill with the same
changes, the gradient will be -2.5, which is a
negative gradient.

So, why are we discussing the gradient?
Because gradients can also be applied on any
differential function that can be used to find

the minimum value of that function by
estimating the direction and the rate of
change in the function with respect to any
input variable. I know this was too technical.
Let's understand this with an example.

We will use our weak learner's error as the
differentiable function. Suppose at the nth

classifier, we get an output pn with an error
on en. Now, our task is to create the next
weak learner (n+1) so that it can reduce the
error generated by the current classifier. For
this, we should know whether the error is
positive (a positive gradient) or negative (a
negative gradient). So, we will introduce our
new weak learner (n+1) and evaluate its
prediction with the previous output
(prediction of nth) to know whether we have
reduced the error or not and accordingly, we
will do it until we reach up to the minimum
of the error value.

So, basically, the gradient of our error
function will tell us the direction, where we
can achieve the minimum value of our error

function and usually, it should be a negative
value (for going downhill). This can be
understood by the following figure:

Figure 6.6: The explanation of the gradient descent algorithm

So, let's understand the preceding figure in
the following steps:

Put the first weak learner and get a
prediction of it.
Calculate the gradient of error
function E by subtracting the predicted
and actual output.
Step in the direction of the greatest
descent (the negative gradient) with step
size S, which means:

In the preceding step, S is the multiplier
to the residual (error) between the
previous output (for the first learner, it
will be the actual output) and the
predicted output. It will help us to
control the speed of convergence.
We will keep adding the weak learners
and train them on the residual
(multiplied by step size) of the previous
prediction, to move in the direction of
the gradient until we reach the minimum
value (close to zero) of the error
function.

The algorithm got its name GBM due to the
gradient descent algorithm, which is a very
popular algorithm to train neural networks
and other machine learning classifiers.

There is one important point that you should
remember. As we can use any differential
error function to calculate the loss, the
algorithm gives us to leverage of using

different kinds of error functions, such as the
sum of squared error, logarithmic loss, or
entropy-based losses.

Now, let's take a look at the complete picture
of a GBM:

Figure 6.7: A GBM (training version)

As you can see the complete flow of training
of a GBM, we can summarize the preceding
process as follows:

Train the first weak classifier with the
original output labels

Choose an error between the predicted
values and the actual output as labels for
the next classifier
Use a multiplier alpha to control the rate
of convergence
Keep adding the weak learners until the
function reaches the convergence

At the time of deployment, the following
approach will be taken:

Figure 6.8: The GBM (testing version)

We have discussed enough theory here, and
it's time to jump into the practical
implementation part of GBM. As you have
seen, we can use any kind of classifier
algorithm to boost and get results out of it,
but in the world of data science, people
always prefer decision trees as the first choice
of the weak learners because it is easy to

understand their architecture. We will also do
the same as you have already learned many
things about them and we know how to
implement them very well. But, GBM doesn't
use classification trees for making
predictions, which makes our task a bit
difficult as we have not seen any kind of
regression tree yet, so before jumping to the
implementation of the GBM algorithm, we
will first develop our very own regression
tree.

<h1>Regression trees

We have already discussed the CART
algorithm in Chapter 3, Random Forest, where
we developed decision trees for the random
forest as well as for standalone tree-based
classification. Now, we will see how to
implement a regression tree and how we can
use them to learn almost any kind of linear or
nonlinear function.

What is the
difference?
The basic and the most important difference
between a classification and a regression tree
is their output value. While for classification
trees, the output values are always discrete or
categorical in nature, the output of the
regression trees is always a continuous value.
One of the most important differences
between them is an evaluation of the splits.
While we used Gini index and Shannon
entropy to evaluate splits in case of
classification trees, regression trees use some
loss functions to do this; the most popular
loss is the sum of squares. There are many
more differences between the two; we will
see them during our progress. The following
is the figure that describes the use cases of
different tree algorithms:

Figure 6.9: Decision tree algorithms

One of the decision tree algorithm C4.5
is just the customization of the original
CART algorithm that we have seen earlier (in
random forest); the basic difference in any
kind of tree-based algorithms is based on how
they choose the node values for different
branches.

There is one important aspect of regression
trees; we can use a regression tree as a

classifier or a regression predict, or both; the
same case is not applicable for the
classification tree.

As we know, the tree structure of a
classification problem looks as follows:

Figure 6.10: Decision tree on categorical and numerical data

Node values may be a categorical or
continuous number; similarly, branches may
have categorical or continuous values, but the

leaf node will always have discrete values.

Regression tree will look as follows:

Figure 6.11: An example of a regression tree

We can use the preceding tree as a
classification by adding a transfer function at
the end:

Figure 6.12: An example of a regression tree as a classifier

Here, we have just round the fractional
values, so the values more than 0.5 go to
class 1 and less than or equal to 0.5 will goes
to class 0. Other options to convert
continuous data into some meaningful class is
to convert the values into probabilities
(softmax) or apply a sigmoid function, which
can convert the values in the range of 0 to 1.
We will look at these kinds of transfer
functions in the future chapters.

Now, the question is how do we build a
regression tree? To answer this question, let's
look at the fundamental elements required to
build the tree:

We should have some metric on the
basis of which we can decide what
should be the value of our node
(including the root node)
We must know where to split a tree
branch
We must know some stopping criteria
for our tree growing process or it may
grow for an infinite time

So, what we have done for these in the past is
as follows:

We have used the Gini index as the
decision metric for choosing the node
value
We have split the branches with the
lowest Gini index node value
We have used various stopping criteria,
such as depth of the tree and length of
the splits to stop the tree growth

Guess what; we will do the same for the
regression tree implementation, too! Yes,
except one change that is the metric for
choosing the node value. As earlier, we have
used the Gini index for the task; now, we will
use the sum of squared error for that, except
that one change to our algorithm will remain
almost the same as the classification tree
algorithm.

The algorithm will consist of the following
steps:

1. Create split
2. Node selection
3. Tree building

So, what are we waiting for? Let's start
understanding each section.

Create split
The create split procedure will be the same as
for the classification tree, which we have
already seen in Chapter 3, Random Forest. It
will have two steps:

1. Choose an arbitrary value from the
attribute

2. Use this value as a threshold, and create
two groups from the attribute values
such that one group will have values less
than the threshold and the other group
will have values greater than or equal to
the threshold

The code for this will be similar as earlier we
have seen in Decision tree bagging in Chapter
3, Random Forest:

#Create splits to test for node values

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold

 if values[attribute]<=threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

Once we have split the data into two groups,
it's time to check whether the attribute value
we have chosen creates a perfect split or not.

Node selection
To test the splits, we will use the sum of
squared error between the mean of the output
values and the output value of each instance.
But why do we need to find the error between
the mean and the output values? This is
because this error can tell us how uniform the
group's target values are; this is similar to
finding out the variance of the output values,
so if the variance is low, it means that the
values are very similar to each other and if
the variance is high, the values are distinct.
Let's understand this in the following
example.

Suppose we have created two groups with a
threshold value; the first group looks as
follows:

A1 A2 Out

0.30 0.50 0.20

0.35 0.45 0.23

 0.42 0.53 0.25

Table 6.2: Continuous output variable with similar range of
values

Additionally, the second group looks as
follows:

A1 A2 Out

0.55 0.67 0.60

0.57 0.63 0.65

0.51 0.68 0.67

Table 6.3: Continuous output variable with similar range of
values

Our loss function is as follows:

Where E is an error, yi is the prediction of
the ith instance and is the mean of all the
y (target) in the group. So, on applying
the preceding loss function to our groups, we
will get the error for group one as follows:

The mean value is 0.22 for group one and the
error is 0.0013, which is very low; similarly,
for group two, it is 0.0026 with the mean
value of 0.64. For getting the total error for
the split, we will add them. This will result in
0.0039, which shows the minimum variance
in the groups, and this suggests that the
current value is a good split point. Let's see a
case where the split has different values:

Group one is as follows:

A1 A2 Out

0.30 0.50 0.20

0.35 0.65 0.43

 0.20 0.53 0.35

Table 6.4: Continuous output variable with variable range of
values

Group two is as follows:

A1 A2 Out

0.55 0.17 0.25

0.57 0.63 0.65

0.51 0.49 0.42

Table 6.5: Continuous output variable with variable range of
values

In the preceding case, the error for group one
is 0.027 and for group two is 0.080; the
combined error for the split is 0.107, which is
quite higher in comparison to 0.0039.
So, the preceding exercise shows us that this
metric can help us find out the best split in
the dataset.

Let's put it into our code with the function
name SquaredError():

def SquaredError(groups):

 #Initialize the variable for SSE

 sse = 0.0

 #Iterate for both the groups

 for group in groups:

 size = len(group)

 #If length is 0 continue for the next

group

 if size == 0:

 continue

 #Take all the class values into a list

 class_values = [row[-1] for row in

group]

 #Calculate SSE for the group

 sse += np.sum((class_values-

np.mean(class_values))**2)

 return sse

Now, we have the metric to evaluate the
splits; it's time to add a function similar to
getNode() from Chapter 3, Random Forest),
which returns us the node value with the best
split; the function goes as follows:

#Function to get new node

def getNode(dataset):

 #initialize variables to store error score,

attribute index and split

 groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 errorScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in range(len(dataset[0])-1):

 for row in dataset:

 #Get split for the attribute value

 groups = createSplit(index,

row[index], dataset)

 #Calculate SSE for the group

 sse = SquaredError(groups)

 #If SSE is less than previous

attribute's SSE return attribute value

 as Node

 if sse < errorScore:

 winnerAttribute,

attributeValue, errorScore, leftGroup = index,

row[index], sse, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

The preceding function works exactly the
same as our getNode function previously did,
except for one change. There we called the
Gini index for split evaluation; here, we
replace that function with SquaredError.

So, we are good to go now for adding the
nodes to our regression tree, but before that,
we need to make one more change, that is,
modifying the function terminalNode(). This
function is responsible for the values of the
leaf node in the tree. In the previous case, we
set the class that occurs maximum in the
group as the leaf value of the branch, but
now, as we don't have the discrete classes, we
will replace the maximum occurrence with

the mean value of the group's target:

def terminalNodeReg(group):

 #Get all the target labels into the List

 class_values = [row[-1] for row in group]

 #Return the Mean value of the list

 return np.mean(class_values)

So, now we have all of the ingredients to
build our first regression tree; as always, we
will understand the tree with the help of an
example.

Build tree
We will use a function fitting example to
understand the concept of the regression tree,
and we will also see how a regression tree
easily fits on a highly nonlinear dataset.

Let's choose the function of sine wave to fit
with our tree as it covers our two important
criteria of creating a regression tree that is,
continuous values for the given time axes and
it has a nonlinear function fitting problem,
too. Let's start by creating a sine wave for 25
sample points:

#Create a Sine wave for demonstration of non-

linearity

#Set the number of samples

N = 25

#Create time values

ix = np.arange(N)

#Create the sine wave using the formula

sin(2*pi*f)

signal = np.sin(2*np.pi*ix/float(N/2))

#Combine both time and amplitude

dataset = range(0,N)

dataset = np.c_[ix,signal]

Let's plot the signal using matplotlib and see
how it looks:

Figure 6.13: The sinusoidal function

So, you can see our sine wave with 25 time
samples and the amplitude range is from -1 to
1; let's start solving the problem by adding a
function for building the tree:

Build a decision tree

def build_tree(train, max_depth, min_size):

 #Add the root node to the tree

 root = getNode(train)

 #Start building the from the root's

branches tree

 buildTreeReg(root, max_depth, min_size, 1)

 return root

The preceding function will add a root node to
the tree and then, it will start building the tree
through the branches of the root. Let's see our
root node:

{'attribute': 0, 'value': 18.0}

 SSE for the attribute 1.00's value 0.00 is

12.000

 SSE for the attribute 1.00's value 1.00 is

11.864

 SSE for the attribute 1.00's value 2.00 is

11.293

 .

 .

 .

 SSE for the attribute 1.00's value 17.00 is

9.236

 SSE for the attribute 1.00's value 18.00 is

8.946

 SSE for the attribute 1.00's value 19.00 is

9.388

 SSE for the attribute 1.00's value 19.00 is

9.388

 SSE for the attribute 1.00's value 20.00 is

10.334

 SSE for the attribute 1.00's value 21.00 is

11.293

 SSE for the attribute 1.00's value 22.00 is

11.864

 SSE for the attribute 1.00's value 23.00 is

12.000

 SSE for the attribute 1.00's value 24.00 is

12.000

As we have only one attribute, we got our
first root at time sample 18.0 with the error of
8.946, which is the lowest amongst all others.
So, here we will have two groups—one group
will have values less than 18 and the other
will have values greater than 18.0. The next
process involves a similar approach. We will
recursively call the function for adding the
nodes under branches created by the root
node. For doing this, we will add
the buildTreeReg() function to our code:

Create child splits for a node or make

terminal

def buildTreeReg(node, max_depth, min_size,

depth):

 #Lets get groups information first.

 left, right = node['groups']

 del(node['groups'])

 # check if there are any element in the

left and right group

 if not left or not right:

 #If there is no element in the groups

call terminal Node

 combined = left+right

 node['left'] =

terminalNodeReg(combined)

 node['right']=

terminalNodeReg(combined)

 return

 # check if we have reached to maximum depth

 if depth >= max_depth:

 node['left']=terminalNodeReg(left)

 node['right'] = terminalNodeReg(right)

 return

 # if all okey lest start building tree for

left side nodes

 # if minimum instances are done by the node

stop further build

 if len(left) <= min_size:

 node['left'] = terminalNodeReg(left)

 else:

 #Create new node under left side of the

tree

 node['left'] = getNode(left)

 #append node under the tree and

increase depth by one.

 buildTreeReg(node['left'], max_depth,

min_size, depth+1)

 #recursion

will take place in here

 # Similar procedure for the right side

nodes

 if len(right) <= min_size:

 node['right'] = terminalNodeReg(right)

 else:

 node['right'] = getNode(right)

 buildTreeReg(node['right'], max_depth,

min_size, depth+1)

The preceding function is self-explanatory;
let's see the summary of the preceding

function:

It will take the previous node as the
input
Extract the groups created with the
attribute value
If there is no group under the node
value, terminate the tree by calling the
terminal node
If the tree reaches the maximum depth,
terminate the tree. If not, go to the next
step
Check the minimum number of
instances in the group; if less than
min_size, terminate the tree, if not, go to
the node in the branch
Recursively call the preceding steps
until we reach one of the thresholds
from max_depth or min_size

So, after doing the preceding process, our tree
looks as follows:

#Maximum Depth

max_depth = 3

#Minimum number of instances to process in the

group

min_size = 1

#Start building the tree

tree_rg = build_tree(dataset,max_depth,

min_size)

#Print the Tree

pprint.pprint(tree_rg)

{'attribute': 0,

 'left': {'attribute': 0,

 'left': {'attribute': 0,

 'left': 0.53315011536698242,

 'right':

-0.62200846792814624,

 'value': 6.0},

 'right': {'attribute': 0,

 'left':

0.74641016151377548,

 'right':

3.6739403974420594e-16,

 'value': 17.0},

 'value': 12.0},

 'right': {'attribute': 0,

 'left': {'attribute': 0,

 'left':

-0.49999999999999917,

 'right':

-0.80801270189221985,

 'value': 19.0},

 'right': -4.8985871965894128e-16,

 'value': 23.0},

 'value': 18.0}

Let's see how this tree fits our input function
for depth three:

Figure 6.14: Under fitting by a shallow decision tree

As you can see for the depth three, our tree is
not fitting the function well. There are errors
for almost each instance in the dataset. We
will increase the depth of our tree until we get
the minimum error between our input and
prediction. After putting depth of nine, we
got a perfect fit for our function which looks
as follows:

Figure 6.15: Perfect fitting by decision tree

So, you can see how we got the perfect fit at
depth nine previously. We can't print the tree
for depth nine as it will take a lot of space,
which is not a good idea.

Regression tree as a
classifier
We have seen how to develop a regression
tree from scratch; now, it's time to use it for a
practical dataset. We will use our regression
tree for the classification of the data. We will
apply the regression tree for the data of a
breast cancer study. We have used a similar
dataset in Chapter 3, Random Forest, where we
applied a random forest algorithm to predict
the output.

We will use the data of a breast cancer study
which is available online at the location: https:/
/archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+
%28Original%29. Here is the summary of the
dataset:

Data set Name: Breast Cancer Wisconsin

(Original) Data Set

Number of Instances: 699

Attributes characteristics: Integer

Number of attributes: 10

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

Number of classes: 2

Attribute information:

 1. Sample code number: id number

 2. Clump Thickness: 1 - 10

 3. Uniformity of Cell Size: 1 - 10

 4. Uniformity of Cell Shape: 1 - 10

 5. Marginal Adhesion: 1 - 10

 6. Single Epithelial Cell Size: 1 - 10

 7. Bare Nuclei: 1 - 10

 8. Bland Chromatin: 1 - 10

 9. Normal Nucleoli: 1 - 10

 10. Mitoses: 1 - 10

 11. Class: (2 for benign, 4 for malignant)

We will use the following steps to build our
trees:

1. Load the CSV file into the program
2. Convert string values into numerical

data
3. Create training and testing set to

evaluate the model
4. Build the tree on train data and test it on

the training set

We will use helping functions from Chapter
3, Random Forest for the preceding steps. I
will provide the full code listing at the end of

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=307&action=edit#post_231

the chapter. So, let's start the implementation:

filename = 'breast_cancer_data.csv'

dataset = readCsv(filename)

Convert attributes to numerical type

for i in range(0, len(dataset[0])):

 convert_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

#Now remove index column from the data set

dataset_new = []

for row in dataset:

 dataset_new.append([row[i] for i in

range(1,len(row))])

#Get training and testing data split

training,testing =

getTrainTestData(dataset_new, 0.8)

#We will going to build our tree for maximum

depth of 11 and with minimum instances for a

node of 5

tree = build_tree(training,11,5)

#Evaluation of the function on training data

pre = []

act = []

for row in training:

 prediction = np.round(rg.predict(tree,

row))

 pre.append(prediction)

 actual = act.append(row[-1])

acc = accuracy_metric(act, pre)

print("Training Accuracy of Model is:

%.2f"%acc)

#Evaluation of the function on testing data

pre = []

act = []

for row in testing:

 prediction = np.round(rg.predict(tree,

row))

 pre.append(prediction)

 actual = act.append(row[-1])

 acc = accuracy_metric(act, pre)

print("Testing Accuracy of Model is: %.2f"%acc)

Let's see what we have got after execution:

Training Accuracy of Model is: 98.39

 Testing Accuracy of Model is: 97.14

Do you know what accuracy we were getting
in the CART as a classification mode in Chapte
r 3, Random Forest? Well, for your reference,
here are the numbers for depth of 11 and
minimum size 5:

Training Accuracy of Model is: 95.91

Testing Accuracy of Model is: 95.28

So, you can see that we have improved our
training and testing accuracies with a good
margin. I want to present you a case of high
variance (overfitting) of our regression tree
on the same data set. Let's put the same depth
of 11, but the minimum size for a node is 1.

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=307&action=edit#post_231

Can you guess the output?

Training Accuracy of Model is: 100.00

Testing Accuracy of Model is: 96.43

Can you see what we have got? We have got
a training accuracy of 100, while the testing
accuracy of the model is 96.43, which clearly
shows the overfitting of our model, and it is a
big drawback of the regression tree. To
overcome this overfitting, we can use
ensembles of the tree in the random forest
algorithm. The discussion of random forest
here is out of context, so I will encourage you
guys to use the regression tree's random
forest for the same data set to see what kind
of accuracy we can get.

GBM
implementation
We have implemented a regression tree
successfully, we have tested it on a real
dataset, and got a very good accuracy. Now,
this is the time to build a boosting ensemble
of the regression tree to turn it into a very
powerful nonlinear classifier. As we already
know, the basic ingredient of GBM is a
classifier that can predict continuous values at
the output and also have a differential error
function so that we can apply gradient decent
on it. Regression trees are the perfect match
for the task, so let's try to implement a GBM
with the use of our regression trees.

Algorithm
As we have already seen the theoretical
procedure of the GBM, we can summarize
the algorithm in the following points:

Build a decision tree on the initial
dataset and find the error between the
actual output and the prediction
Use this error (or residual in literature)
as the new output values for the dataset's
instances
Build a new tree on the dataset with
residual as the label of the instances and
train the tree to reconstruct the error
created by the previous tree
Add trees to the process until we
minimize the error between the previous
output and the current prediction up to
the desired level

I think that the procedure is quite clear. To
implement the algorithm in our code, we will

require some more helper functions to our
regression tree code.

So, first we will add the function to calculate
error values between the prediction and the
actual output; let's do it by adding a function
getResidual():

def getResidual(actual,pred):

 #Create an empty list to store individual

error of the instances

 residual = []

 # Run a loop to get difference between

output and prediction of each instance

 for i in range(len(actual)):

 #Get the difference and add the

difference to the list of residuals

 diff = (actual[i]-pred[i])

 residual.append(diff)

 #Calculate the Sum of squared error between

output and prediction

 mse = np.sum(np.array(residual)**2)

 return residual,mse

The preceding function will create a list of
differences between each instance as well as
the calculation of the total error made by the
tree. We will use this error as the new label
for the instances of the dataset.

Now, we are ready for the gradient boosting
algorithm; let's add function GradientBoost().
The following code block will do the process
we discussed previously:

def

GradientBoost(dataset,depth,mincount,iterations):

 dataset = np.array(dataset)

 #Create a list to add weak

learners(decision stumps)

 weaks = []

 #Lets run the loop for number of

iteration(number of classifiers)

 for itr in range(iterations):

 #Create decision tree from the data-set

 ds = build_tree(dataset,depth,mincount)

 #Create a list to store the predictions

of the decision stump

 pred=[]

 #Create a list to store actual outputs

 actual = []

 #Let's predict output for each instance

in the data set

 for row in dataset:

 actual.append(row[-1])

 pred.append(predict(ds, row))

 #Here we will find out difference

between predicted and actual output

 residuals,error = getResidual(actual,

pred)

 #Print the error status

 print("\nClassifier %i error is %.5f"%

(itr,error))

 #Check for the convergence

 if error<=0.00001:

 break

 #Replace the previous labels with the

current differences(Residuals)

 dataset[:,-1] = residuals

 #Append the weak learner to the list

 weaks.append(ds)

 return weaks

As you can see, the preceding code is pretty
simple to understand. The input of the
algorithm will be dataset, the maximum depth
of each tree, the minimum size of a group for
a node, and the maximum number of the trees
to be added to our GBM model. As this is a
sample implementation, we keep complexity
away from it. If you look closely, we have
followed exactly the same procedure to build
our GBM as we discussed earlier.

So, first let's define our problem statement
and then, we will see how our GBM performs
on the nonlinear dataset.

We will create a sine wave with the 256
samples and try to fit our GBM on this:

#Create a Sine wave for demonstration of non-

linearity

#Set the number of samples

N = 256

#Create time value

ix = np.arange(N)

#Create the sine wave using the formula

sin(2*pi*f)

signal = np.sin(2*np.pi*ix/float(N/2))

#Combine both time and amplitude

dataset = range(0,N)

dataset = np.c_[ix,signal]

dataset_ = dataset.copy()

We will create our GBM with a different
number of trees to evaluate the performance
of the ensemble. For simplicity, we will
choose a tree with the depth one, that is,
decision stump. Let's see how our algorithm
works:

error = []

max_number_of_trees=50

interval = 10

for ntree in

range(1,max_number_of_trees,interval):

 weaks = rg.GradientBoost(dataset,1,1,ntree)

 preiction=[]

 actual = []

 #Run a loop to extract each instance from

the data set

 for row in dataset_:

 #Create a list to store predictions

from different classifier for the

test instance

 preds = []

 #Feed the instance to different

classifiers

 for i in range(len(weaks)):

 #Multiply the predicted ouput with

the alpha value of the classifier

 p = rg.predict(weaks[i], row)

 #Add the weighted prediction to the

list

 preds.append(p)

 #Sum up output of all the classifiers

and take their sign as the prediction

 final = (sum(preds))

 #Append the final output to the

prediction list and actual output to the actual

list

 prediction.append(final)

 actual.append(row[-1])

 #Append the error of the current

configuration

 _,mse = rg.getResidual(actual, prediction)

 error.append(mse)

#Lets Plot the error in each configuration

plt.figure()

plt.plot(range(1,max_number_of_trees,interval),error,marker=

plt.show()

Let's see the execution summary of the

preceding code:

Figure 6.16: From left to right a,b,c,d—showing
performance of GBM for different number of trees

As you can see in figure a, our prediction is
underfitting the input function by a huge
margin. When we add 10 more decision
stumps (in figure b), our system starts to

reconstruct errors created by the previous
classifiers and reducing it, figure b shows the
output after appending 20 decision stumps.

Figure c shows a recreation of the function
after adding 30 decision stumps, and you can
see improvement in the reconstruction of a
signal from our system. This reconstruction is
slow because we used a very shallow
decision tree of depth one only, but still, you
can see the reduction in the error from
figure d. If we keep adding the trees into the
system, our accuracy will increase
accordingly. Now, if we increase the depth to
five, we will get the following output by
adding just 26 trees in the ensemble:

Figure 6.17: Perfect fit by GBM

You can see that we have a perfect fit in very
less iteration with the trees of more depth, so
here, we have the following parameters to
control the output behavior of the GBM in
our implemented code.

Improvements to
basic gradient
boosting
Gradient boosting is a greedy algorithm and
can overfit a training dataset quickly.

It can benefit from regularization methods
that penalize various parts of the algorithm
and generally improve the performance of the
algorithm by reducing overfitting.

In this section, we will look at four
enhancements to basic gradient boosting:

Tree constraints
Shrinkage
Random sampling
Penalized learning

Tree constraints
It is important that the weak learners have
skill but remain weak. There are a number of
ways in which the trees can be constrained. A
good general heuristic is that the more
constrained tree creation is, the more trees
you will need in the model, and the reverse,
where the fewer constrained individual trees,
the fewer trees that will be required.

The following are some constraints that can
be imposed on the construction of decision
trees:

Number of trees: Generally, adding
more trees to the model can be very slow
to overfit. The advice is to keep adding
trees until no further improvement is
observed.
Tree depth: Deeper trees are more
complex trees, and shorter trees are
preferred. Generally, better results are

seen with 4-8 levels.
Number of nodes or number of leaves:
Like depth, this can constrain the size of
the tree, but is not constrained to a
symmetrical structure if other constraints
are used.
Number of observations per split: This
imposes a minimum constraint on the
amount of training data at a training
node before a split can be considered.
Minimum improvement to loss: This is
a constraint on the improvement of any
split added to a tree.

Weighted updates
The predictions of each tree are added
together sequentially. The contribution of
each tree to this sum can be weighted to slow
down the learning by the algorithm. This
weighting is called a shrinkage or a learning
rate.

The effect is that learning is slowed down, in
turn requiring more trees to be added to the
model, in turn taking longer to train,
providing a configuration trade-off between
the number of trees and the learning rate.

Stochastic gradient
boosting
A big insight into bagging ensembles and the
random forest was allowing trees to be
greedily created from the subsamples of the
training dataset. This same benefit can be
used to reduce the correlation between the
trees in the sequence in the gradient boosting
models. This variation of boosting is called
stochastic gradient boosting. A few variants
of stochastic boosting that can be used are as
follows:

Subsample rows before creating each
tree
Subsample columns before creating each
tree
Subsample columns before considering
each split

Generally, aggressive subsampling, such as

selecting only 50% of the data has shown to
be beneficial.

Penalized gradient
boosting
Additional constraints can be imposed on the
parameterized trees in addition to their
structure. Classical decision trees, such as
CART, are not used as weak learners, instead,
a modified form called a regression tree is
used, which has numeric values in the leaf
nodes (also called terminal nodes). The
values in the leaves of the trees can be called
weights in some literature.

As such, the leaf weight values of the trees
can be regularized using popular
regularization functions, such as:

L1 regularization of weights
L2 regularization of weights

Summary
So, this was the basis of GBMs. We started
from the basics concepts of gradient boosting.
We have seen the theoretical explanation of
the technique, which shows great promises to
improve the accuracy of an ensemble system
of weak learners. We also saw what
regression is and how the regression tree
works. Then, we implemented working
regression tree by ourselves and used it to fit
a sinusoidal function, which is nonlinear in
nature. After this, we have seen how to use a
regression tree as a classifier by just rounding
the predicted value; by the way, this is not a
good way to do it, but we have achieved a
significant improvement in the output
accuracy in comparison with the
classification tree. Then, we implemented the
theoretical concept of the GBM into the
practical code and saw how it can reduce the
error of prediction by increasing the number

of trees in the ensemble.

So, this is not the end of gradient boosting.
We have just implemented a basic version of
the GBM algorithm to understand the
concepts behind it. In the next chapter, we
will see a more robust, scalable, and widely
used version of the gradient boosted machine
—XGBoost. We will see how to use
XGBoost and how to tune its parameter to get
the maximum prediction accuracy out of it.
See you in the next chapter; till then keep
implementing the code discussed in this
chapter. In the following section, I have
shared the full code listing of regression trees
and GBM.

XGBoost – eXtreme
Gradient Boosting
In the previous chapter, we learned how a
gradient boosting machine can help us learn
complex functions. We implemented a
Gradient Boosting Machine (GBM) using
regression trees as weak learners. In this
chapter, we will talk about the XGBoost
library, which is based on the same GBM
principle we implemented earlier. It is a third-
party library that has been written in Python
and R. Both are very famous programming
languages used to implement data analytics
solutions. So first, we are going to understand
why we should move towards a third-party
library when we can implement algorithm
concepts on our own. The answer is quite
simple—performance optimization!!

There is no doubt that we can implement any
algorithm concept in any programming

language, but to implement an algorithm in a
very efficient way so that we can train a
system in very less time, as well as deploy
these systems in real time is very difficult.
This requires an in-depth knowledge of
various data structures and strong hands-on
programming. We can't spend out time
learning all kinds of programming concepts
before we implement a solution. For this
purpose, we use third-party libraries, which
are written by developers who have excellent
programming skills. A similar kind of library
is XGBoost, which is very fast to train and
very efficient at using available resources so
that we can get real-time performance from
the implemented framework.

XGBoost –
supervised learning
 eXtreme Gradient Boosting (XGBoost). It
is an implementation of GBM created
by Tianqi Chen, and now it has contributions
from many developers. It belongs to a
broader collection of tools under the umbrella
of the Distributed Machine Learning
Community (DMLC), who are also the
creators of the popular mxnet deep learning
library.

XGBoost is a software library that you can
download and install on your machine; then
you can access it from a variety of interfaces.
Specifically, XGBoost supports the following
main interfaces:

Command-Line Interface (CLI)
C++ (the language in which the library
is written)

The Python interface as well as a model
in scikit-learn
The R interface as well as a model in the
caret package
Julia
Java and JVM languages such as Scala
and platforms such as Hadoop

XGBoost is used for supervised learning
problems, where we use the training data
(with multiple features) xi to predict a target
variable yi. Before we dive into trees, let's
start by reviewing the basic elements in
supervised learning.

Models and
parameters
The model in supervised learning usually
refers to the mathematical structure for
making the prediction yi given xi. For
example, a common model is a linear model,
where the prediction is given by:

It's a linear combination of weighted input
features. The prediction value can have
different interpretations depending on the
task, that is, regression or classification. For
example, it can be logistically transformed to
get the probability of a positive class in
logistic regression, and it can also be used as
a ranking score when we want to rank our
outputs.

The parameters are the undetermined part that
we need to learn from the data. In linear
regression problems, the parameters are the
coefficients W. Usually we will use W to
denote the parameters (there are many
parameters in a model; our definition here is
sloppy).

Objective function –
training loss +
regularization
Based on different understandings of yi, we
can have different problems such as
regression, classification, ordering, and so on.
We need to find a way to find the best
parameters given the training data. In order to
do so, we need to define a so-called objective
function to measure the performance of the
model given a certain set of parameters.

A very important fact about objective
functions is that they must always contain
two parts, training loss and regularization:

L is the training loss function and Ω is the
regularization term. The training loss

measures how predictive our model is on
training data. For example, a commonly used
training loss is mean squared error:

Another commonly used loss function is
logistic loss for logistic regression:

The regularization term is what people
usually forget to add. It controls the
complexity of the model, which helps us to
avoid overfitting. This sounds a bit abstract,
so let's consider the following problem in the
following picture. You are asked to fit a
visual step function given the input data
points in the top-left corner of the image.
Which solution among the three do you think
is the best fit?

The correct answer is marked in red. Please
consider whether this seems a reasonable fit

visually. The general principle is that we
want both a simple and predictive model. The
trade-off between the two is also referred to
as bias-variance trade-off in machine
learning:

Figure 7.1: Optimal decision boundaries

Why introduce the
general principle?
The elements introduced so far have been the
basic elements of supervised learning, and
they are naturally the building blocks of
machine learning toolkits. For example, you
should be able to describe the differences and
commonalities between boosted trees and
random forests. Understanding the process in
a formalized way also helps us to understand
the objective that we are learning and the
reason behind the heuristics such as pruning
and smoothing.

So we want to design a system that can
incorporate the aforementioned concepts to
generate predictions without any bias-
variance trade-off; gradient boosting is the
technique that can incorporate all of the
aforementioned changes. If you remember,
we discussed these kinds of changes at the

end of the previous chapter, where I
suggested some variations to create an
efficient GBM.

XGBoost is a well-written library that allows
the user to control these parameters; let’s see
how we can use these parameter variations. In
the next section, we will talk about the
features offered by the XGBoost library.

XGBoost features
The library is laser focused on computational
speed and model performance; as such, there
are few frills. Nevertheless, it does offer a
number of advanced features.

Model features
The implementation of the model supports
the features of the scikit-learn and R
implementations, with new additions such
as regularization. Three main forms of
gradient boosting are supported:

Gradient boosting: This algorithm is
also called GBM and includes the
learning rate. We have seen a very
detailed description of the GBM in the
previous chapter.
Stochastic gradient boosting: A big
insight into bagging ensembles and
random forests was allowing trees to be
greedily created from subsamples of the
training dataset. This same benefit can
be used to reduce the correlation
between trees in a sequence in gradient
boosting models. This variation of
boosting is called stochastic gradient
boosting. A few variants of stochastic

boosting that can be used are:
Subsample rows before creating
each tree
Subsample columns before creating
each tree
Subsample columns before
considering each split

Generally, aggressive
subsampling such as selecting
only 50% of the data has shown to
be beneficial. Stochastic gradient
boosting reduces high variance
trade-off chances and it allows
using parallel architecture
implementations, which helps in
computations on distributed
computing systems.

Regularized gradient
boosting: Classical decision trees such
as CART are not used as weak learners;
instead, a modified form called a
regression tree is used. It has numeric
values in the leaf nodes (also called

terminal nodes). The values in the
leaves of the trees can be called weights
in some literature.

As such, the leaf weight values of the trees
can be regularized using popular
regularization functions such as:

L1 regularization of weights
L2 regularization of weights

System features
The library provides a system for use in a
range of computing environments, not least
the following:

Parallelization of tree construction
using all of your CPU cores during
training. This makes training of the trees
very fast; it is essential in case of larger
datasets, where we have millions of
instances to train.
Distributed computing for training
very large models using a cluster of
machines. This utilizes the power of
multiple workers; we can use many
CPUs in working together on the large
datasets.
Out-of-Core computing for very large
datasets that don't fit into memory. This
will be required when the size of our
dataset is in GB; in such cases, lower
end systems can't load the whole dataset

into the system RAM at once.
Cache optimization of data structures
and algorithms to make best use of
hardware. This allows maximum
utilization of the hardware, which results
in highest efficiency in real-time-based
applications.

Algorithm features
The implementation of the algorithm
was engineered for efficiency of compute
time and memory resources. One design goal
was to make the best use of available
resources to train the model. Some key
algorithm implementation features include:

Sparse-aware implementation with
automatic handling of missing data
values. It is very helpful functionality in
real-world datasets, where you will find
missing values of attributes very often; if
you discard the whole instance because
of the missing value, it affects the size of
the dataset. XGBoost's algorithm uses
interpolation to predict the missing
value.
Block structure to support
parallelization of tree construction.
Continued training so that you can
further boost an already fitted model on

new data. This is very useful
functionality in the case of online
training systems where you don't have a
fixed-length dataset; in such cases, you
can use a previously trained model to
append new trees to the system for the
new instances.
Tree pruning a GBM would stop
splitting a node when it encounters a
negative loss in the split. Thus it is more
of a greedy algorithm. XGBoost on the
other hand makes splits up to the
max_depth specified and then
starts pruning the tree backwards to
remove splits beyond which there is no
positive gain. Another advantage is that
sometimes a split of negative loss, say
-2, may be followed by a split of
positive loss, say +10. GBM will stop as
soon as it encounters -2. But XGBoost
will go deeper; it will see a combined
effect of +8 of the split and keep both.
Built-in cross-validation XGBoost
allows the user to run a cross-validation
in each iteration of the boosting process

and thus it is easy to get the exact
optimum number of boosting iterations
in a single run. This is unlike GBM,
where we have to run a grid search and
only limited values can be tested.

So you can see the benefits of a third-party
library you can use them in a generalized
way.

Why use XGBoost?
The two reasons to use XGBoost are:

Execution speed
Model performance

XGBoost execution
speed
Generally, XGBoost is fast; it is really fast
compared to other implementations of
gradient boosting.

Szilard Pafka, a chief data scientist,
performed some objective benchmarks,
comparing the performance of XGBoost with
other implementations of gradient boosting
and bagged decision trees. He wrote his
results in May 2015 in a blog post titled
Benchmarking Random Forest
Implementations.

He also provides all of the code on GitHub (ht
tps://github.com/szilard/benchm-ml) and a more
extensive report of results with hard numbers:

https://github.com/szilard/benchm-ml

Figure 7.2: Speed comparison of XGBoost

His results showed that XGBoost was almost
always faster than the other benchmarked
implementations from R, Python, Spark, and
H2O.

Model performance
XGBoost dominates structured or tabular
datasets on classification and regression
predictive modeling problems. The evidence
is that it is the go-to algorithm for
competition winners on the Kaggle
competitive data science platform.

Again, we have already talked about various
parameters that improve its performance over
other ensemble methods such as tree bagging.

How to install
Installing XGBoost on a Windows system is
a bit painful method, while on Linux-based
machines, it is quite easy. By the way, I will
share an easy solution to install it on a
Windows machine later. You can find the
detailed descriptions of installation on
various platforms from the official page of
XGBoost (http://xgboost.readthedocs.io/en/latest/build.ht
ml#building-on-windows). We will discuss the
installation on two major platforms, that is,
Windows and Linux.

To install XGBoost on any system, there are
two steps to be taken:

1. First, build the shared library from the
C++ code (libxgboost.so for Linux/OS X
and libxgboost.dll for Windows
versions). Note the exception: for an R
package installation, please directly refer
to the R package section.

http://xgboost.readthedocs.io/en/latest/build.html#building-on-windows

2. Then install the language packages (for
example, Python package).

Building the shared
library
Our goal is to build the shared library:

On Linux/OS X, the target library
is libxgboost.so
On Windows, the target library
is libxgboost.dll

The minimal building requirement is a recent
C++ compiler supporting C++ 11 (g++-4.8 or
higher).

We can edit make/config.mk to change the
compile options, and then build by make. If
everything goes well, we can go to the
specific language installation section.

Building on
Ubuntu/Debian
On Ubuntu, one builds xgboost by typing the
following:

git clone --recursive

https://github.com/dmlc/xgboost

cd xgboost; make -j4

Building on Windows
You need to first clone the xgboost repo with
recursive option and clone the submodules. If
you are using GitHub tools, you can open the
git-shell, and type the following command.
We recommend using https://git-for-windows.github.
io/ because it brings a standard bash shell.
This will highly ease the installation process:

git submodule init

git submodule update

XGBoost supports both builds: by MSVC or
MinGW. Here is how you can build the
XGBoost library using MinGW.

After installing https://git-for-windows.github.io/, you
should have a shortcut Git Bash. All of the
following steps are in Git Bash.

In MinGW, the make command comes with the
name mingw32-make. You can add the following
line into the .bashrc file:

https://git-for-windows.github.io/
https://git-for-windows.github.io/

alias make='mingw32-make'

To build with MinGW:

cp make/mingw64.mk config.mk; make -j4

To build with Visual Studio 2013, use cmake.
Make sure you have a recent version of cmake
added to your path, and then from the xgboost
directory, do this:

mkdir build

cd build

cmake .. -G"Visual Studio 12 2013 Win64"

This specifies an out-of-source build using
the MSVC 12 64-bit generator. Open the .sln
file in the build directory and build with
Visual Studio. To use the Python module,
you can copy libxgboost.dll into Python-
package\xgboost.

A trick for easy
installation on a
Windows machine
Now this is the interesting part; to build the
library, you will need Microsoft Visual
Studio. You can download a trial version
from the official website of the product; I
have already put a ZIP file that contains the
important files needed to build the shared
library. The dropbox location of the ZIP is http
s://www.dropbox.com/s/fsa4xtbom3bg09b/xgboost-0.40.zip?
dl=0. The following are the steps:

1. Download the .zip file
2. Unzip the file to access the directories

using any extractor tool such as
WinRAR.

3. Locate the folder named Windows
4. Inside the folder, you will find the

Microsoft Visual Studio solution file

https://www.dropbox.com/s/fsa4xtbom3bg09b/xgboost-0.40.zip?dl=0

xgboost.sln

5. Open the solution file in Visual Studio
and build it in release mode for the
desired system architecture (32-bit or
64-bit)

6. Once the library successfully builds, go
to the folder named Wrapper in the xgboost
folder

7. Now open a command window here and
type:

Python setup.py install

This will install the library in your Python
site-packages folder and now you are ready to
use the library in any Python IDE.

XGBoost in action
So after building successfully, it's time to test
the library in Python. We will use an old
dataset for predictions of diabetes; the dataset
is available on the UCI machine learning
repository. Its name is Pima Indians onset of
diabetes dataset. Here is the direct link: https://a
rchive.ics.uci.edu/ml/machine-learning-databases/pima-india
ns-diabetes/pima-indians-diabetes.data.

https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data

Dataset information
Several constraints were placed on the
selection of these instances from a larger
database. In particular, all patients here are
females, at least 21 years age, and of Pima
Indian heritage. ADAP is an adaptive
learning routine that generates and executes
digital analogs of perceptron-like devices. It
is a unique algorithm; see the paper for
details.

Attribute
information
Here is the attribute information of the
instances:

Number of times pregnant
Plasma glucose concentration a two
hours in an oral glucose tolerance test
Diastolic blood pressure (mm Hg)
Triceps skin fold thickness (mm)
Two hour serum insulin (mu U/ml)
Body mass index (weight in kg/(height
in m)^2)
Diabetes pedigree function
Age (years)
Class variable (zero or one)

 Let's start coding; we have all the required
files with us and now we are ready to
implement the code for the problem. Let's do
it!

First XGBoost model for Pima Indians dataset

#Load the required libraries

#Numpy for reading the csv file

from numpy import loadtxt

#Import XGBoost classifier

from xgboost import XGBClassifier

#We will use sklearn to divide our data set

into training and test set

from sklearn.model_selection import

train_test_split

#We will use sklearn's accuracy metric to

evaluate the performance of the trained model

from sklearn.metrics import accuracy_score

#Let's load the dataset into the numpy array

dataset = loadtxt('pima-indians-diabetes.csv',

delimiter=",")

We must separate the columns (attributes or
features) of the dataset into input patterns (X)
and output patterns (Y). We can do this easily
by specifying the column indices in the
NumPy array format:

#split data into X (input variables)and

y(output variable/Class)

X = dataset[:,0:8]

Y = dataset[:,8]

Finally, we must split the X and Y data into a
training and a test dataset. The training set
will be used to prepare the XGBoost model

and the test set will be used to make new
predictions, from which we can evaluate the
performance of the model.

For this, we will use the train_test_split()
function from the scikit-learn library. We also
specify seed for the random number generator
so that we always get the same split of data
each time this example is executed:

#Create training and test set with 33% data in

test set and 66% for the training of the model

seed = 7

test_size = 0.33

X_train, X_test, y_train, y_test =

train_test_split(X, Y, test_size=test_size,

random_state=seed)

XGBoost provides a wrapper class to allow
models to be treated like classifiers or
regressors in the scikit-learn framework. This
means we can use the full scikit-learn library
with XGBoost models.

The XGBoost model for classification is
called XGBClassifier. We can create and fit it to
our training dataset. Models are fit using the
scikit-learn API and the model.fit() function.

The parameters for training the model can be
passed to the model in the constructor. Here,
we use the sensible defaults:

#Train our first model on created training set

model = XGBClassifier()

model.fit(X_train, y_train)

To see the default parameter, we can print the
model's default parameters with a simple
print(model):

XGBClassifier(base_score=0.5,

colsample_bytree=1, gamma=0, learning_rate=0.1,

 max_delta_step=0, max_depth=3,

min_child_weight=1, n_estimators=100,

 nthread=-1, objective='binary:logistic',

seed=0, silent=True,

 subsample=1)

We can make predictions using the fit model
on the test dataset. To make predictions, we
use the scikit-learn function model.predict(). By
default, the predictions made by XGBoost are
probabilities. Because this is a binary
classification problem, each prediction is the
probability of the input pattern belonging to
the first class. We can easily convert them to
binary class values by rounding them to 0 or

1:

#Lets see the prediction from the trained model

y_pred = model.predict(X_test)

#Create a list of predictions for evaluation

purpose

predictions = [round(value) for value in

y_pred]

Now that we have used the fit model to make
predictions on new data, we can evaluate the
performance of the predictions by comparing
them to the expected values. To do this, we
will use the built-in accuracy_score() function in
scikit-learn:

#Evaluate predictions using accuracy metric

accuracy = accuracy_score(y_test, predictions)

#Print the accuracy

print("Accuracy of the trained model is:

%.2f%%" % (accuracy * 100.0))

After the execution of the preceding script,
we will get:

Accuracy of the trained model is: 76.38%

XGBoost parameters
It is necessary to understand the parameters
of an algorithm to use it efficiently; we
cannot rely on the default parameters for
training the model as parameter tuning is a
very subjective area. Some parameters can
work best for a particular dataset while the
same parameters may not give the same
performance on other datasets. In this section,
we will first understand the parameters and
then look at how to tune them.

The overall parameters have been divided
into three categories by XGBoost's authors:

General parameters: These guide the
overall functioning
Booster parameters: These guide the
individual booster (tree/regression) at
each step
Learning task parameters: These
guide the optimization performed

General parameters
These define the overall functionality of
XGBoost:

booster [default=gbtree]: Select the type of
model to run at each iteration. It has
two options:

gbtree: The tree-based models
gblinear: The linear models

silent [default=0]:
Silent mode is activated and set to
one; that is, no running messages
will be printed
It's generally good to keep this at
zero as the messages might help in
understanding the model

nthread [default to maximum number of threads

available if not set]:
This is used for parallel processing
and the number of cores in the
system should be entered

If you wish to run on all cores, no
value should be entered and the
algorithm will detect automatically

There are two more parameters that are set
automatically by XGBoost, so you need not
worry about them. Let's move on to booster
parameters.

Booster parameters
Though there are two types of boosters, I'll
consider only the tree booster here because it
always outperforms the linear booster and
thus the latter is rarely used:

eta [default=0.3]:
Analogous to learning rate in GBM
Makes the model more robust by
shrinking the weights on each step
Typical final values to be used
are 0.01-0.2

min_child_weight [default=1]:
This defines the minimum sum of
weights of all observations required
in a child.
This is similar to min_child_leaf in
GBM but not exactly. It refers to
the minimum sum of weights of
observations while GBM has the
minimum number of observations.
It is used to control overfitting.

Higher values prevent the model
from learning relations that might
be highly specific to the particular
sample selected for a tree.
Values that are too high can lead to
under-fitting hence, it should be
tuned using CV(Cross validation).

max_depth [default=6]:
The maximum depth of a tree, it's
the same as GBM
Used to control overfitting as a
higher depth will allow the model
to learn relations very specific to a
particular sample
Should be tuned using CV
Typical values are 3-10

max_leaf_nodes:
The maximum number of terminal
nodes or leaves in a tree.
This can be defined in place
of max_depth. Since binary trees are
created, a depth of n would produce
a maximum of 2^n leaves.
If this is defined, GBM will ignore
max_depth.

gamma [default=0]:
A node is split only when the
resulting split gives a positive
reduction in the loss function.
Gamma specifies the minimum loss
reduction required to make a split.
It makes the algorithm
conservative. The values can vary
depending on the loss function and
should be tuned.

max_delta_step [default=0]:
Is the maximum delta step, we
allow each tree's weight estimation
to be. If the value is set to zero, it
means there is no constraint. If it is
set to a positive value, it can help
making the update step more
conservative.
Usually this parameter is not
needed, but it might help in logistic
regression when a class is
extremely imbalanced.
It is generally not used but you can
explore further if you wish.

subsample [default=1]:
The same as the subsample of
GBM. This denotes the fraction of
observations to be randomly
sampled for each tree.
Lower values make the algorithm
more conservative and prevent
overfitting, but values that are too
small might lead to underfitting.
Typical values are 0.5-1.

colsample_bytree [default=1]:
Similar to max_features in GBM. This
denotes the fraction of columns to
be randomly sampled for each tree.
Typical values are 0.5-1.

colsample_bylevel [default=1]:
Denotes the subsample ratio of
columns for each split in each level.
I don't use this often, nor should
you, because the subsample and
colsample_bytree will do the job for
you. But you can explore further if
you feel the need.

lambda [default=1]:
The L2 regularization term on

weights (analogous to Ridge
regression).
This used to handle the
regularization part of XGBoost.
Though many data scientists don’t
use it often, it should be explored to
reduce overfitting.

alpha [default=0]:
The L1 regularization term on
weights (analogous to
Lasso regression)
Can be used in case of very high
dimensionality so that the algorithm
runs faster when implemented

scale_pos_weight [default=1]:
A value greater than zero should
be used in case of high class
imbalance as it helps in faster
convergence

Learning task
parameters
These parameters are used to define the
optimization objective, the metric to be
calculated at each step:

1. objective [default=reg:linear]: This defines
the loss function to be minimized. The
most commonly used values are:

binary:logistic: Logistic regression
for binary classification; this
returns the predicted probability
(not class)
multi:softmax: Multiclass
classification using the softmax
objective; this returns the predicted
class (not probabilities)
You also need to set an
additional num_class (number of
classes) parameter defining the
number of unique classes

multi:softprob: The same as softmax
but returns the predicted probability
of each data point belonging to
each class

2. eval_metric [default according to objective

]:
The metric to be used for validation
data
The default values are rmse for
regression and error for
classification
Typical values are:

rmse: Root Mean Square Error
mae: Mean Absolute Error
logloss: Negative log-
likelihood
error: Binary classification
error rate (0.5 threshold)
merror: Multiclass classification
error rate
mlogloss: Multiclass logloss
auc: Area under the curve

3. seed [default=0]:
The random number seed
Can be used to generate
reproducible results and also for
parameter tuning

If you've been using scikit-learn until now,
these parameter names might not look
familiar. A good news is that the xgboost
module in Python has an sklearn wrapper
called XGBClassifier. It uses sklearn-style
naming conventions. The parameters names
that will change are:

eta –> learning_rate

lambda –> reg_lambda

alpha –> reg_alpha

You must be wondering that we have defined
everything except something similar to the
n_estimators parameter in GBM. Well, this
exists as a parameter in XGBClassifier.
However, it has to be passed as
num_boosting_rounds while calling the fit
function in the standard XGBoost

implementation.

Parameter tuning –
number and size of
decision trees
As we have seen, there are various
parameters available for tuning in XGBoost,
but the most important and most useful
parameters are the number and size of the
decision trees. In this part, we will discuss
these in detail with the help of a Kaggle
competition problem.

Problem
description – Otto
dataset
In this discussion, we will use the https://www.ka
ggle.com/c/otto-group-product-classification-
challenge dataset.

This dataset is available for free from Kaggle
(you will need to sign up with Kaggle to be
able to download this dataset). You can
download the training
dataset, train.csv.zip, from https://www.kaggle.com
/c/otto-group-product-classification-challenge/data and
place the unzipped train.csv file in your
working directory.

This dataset describes 93 obfuscated details
of more than 61,000 products grouped into 10
product categories (for example, fashion,
electronics, and so on). The input attributes

https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/otto-group-product-classification-challenge/data

are counts of different events of some kind.

The goal is to make predictions for new
products as an array of probabilities for each
of the 10 categories, and models are
evaluated using multiclass logarithmic loss
(also called cross-entropy).

This competition was completed in May
2015, and this dataset is a good challenge for
XGBoost because of the non-trivial number
of examples, the difficulty of the problem,
and the fact that little data preparation is
required (other than encoding the string class
variables as integers).

Tune the number of
decision trees in
XGBoost
Most implementations of gradient boosting
are configured by default with a relatively
small number of trees, such as hundreds or
thousands. The general reason is that on most
problems, adding more trees beyond a limit
does not improve the performance of the
model.

The reason is in the way the boosted tree
model is constructed—sequentially—where
each new tree attempts to model and correct
the errors made by the sequence of the
previous trees. Quickly, the model reaches a
point of diminishing returns.

We can demonstrate this point of diminishing
returns easily on the Otto dataset. The number

of trees (or rounds) in an XGBoost model is
specified to the XGBClassifier or XGBRegressor
class in the n_estimators argument. The default
in the XGBoost library is 100.

Using scikit-learn, we can perform a grid
search of the n_estimators model parameter,
evaluating a series of values from 50 to
350 with a step size of 50 (50, 150, 200, 250,
300, 350):

grid search

model = XGBClassifier()

n_estimators = [50, 100, 150, 200]

max_depth = [2, 4, 6, 8]

print(max_depth)

param_grid = dict(max_depth=max_depth,

n_estimators=n_estimators)

kfold = StratifiedKFold(n_splits=10,

shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid,

scoring="neg_log_loss", n_jobs=-1, cv=kfold,

verbose=1)

grid_result = grid_search.fit(X,

label_encoded_y)

We can perform this grid search on the Otto
dataset using 10-fold cross validation,
requiring 60 models to be trained (6
configurations * 10 folds).

The full code listing is provided here for
completeness:

XGBoost on Otto dataset, Tune n_estimators

These imports are common for all

configurations we will discuss

from pandas import read_csv

from xgboost import XGBClassifier

from sklearn.model_selection import

GridSearchCV

from sklearn.model_selection import

StratifiedKFold

from sklearn.preprocessing import LabelEncoder

import matplotlib

matplotlib.use('Agg')

from matplotlib import pyplot

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y =

LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

n_estimators = range(50, 400, 50)

param_grid = dict(n_estimators=n_estimators)

kfold = StratifiedKFold(n_splits=10,

shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid,

scoring="neg_log_loss", n_jobs=-1, cv=kfold)

grid_result = grid_search.fit(X,

label_encoded_y)

summarize results

print("Best: %f using %s" %

(grid_result.best_score_,

grid_result.best_params_))

means =

grid_result.cv_results_['mean_test_score']

stds =

grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds,

params):

 print("%f (%f) with: %r" % (mean, stdev,

param))

plot the results

pyplot.errorbar(n_estimators, means, yerr=stds)

pyplot.title("XGBoost n_estimators vs Log

Loss")

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.savefig('n_estimators.png')

Running this example prints the following
results:

Best: -0.001152 using {'n_estimators': 250}

-0.010970 (0.001083) with: {'n_estimators': 50}

-0.001239 (0.001730) with: {'n_estimators':

100}

-0.001163 (0.001715) with: {'n_estimators':

150}

-0.001153 (0.001702) with: {'n_estimators':

200}

-0.001152 (0.001702) with: {'n_estimators':

250}

-0.001152 (0.001704) with: {'n_estimators':

300}

-0.001153 (0.001706) with: {'n_estimators':

350}

We can see that the cross-validation log loss
scores are negative. This is because the scikit-
learn cross-validation framework inverted
them. The reason? Internally, the framework
requires that all metrics that are being
optimized are to be maximized, whereas log
loss is a minimization metric. It can easily be
maximized by inverting the scores.

The best number of trees was n_estimators=250,
resulting in a log loss of 0.001152, but that's
really not a significant difference
from n_estimators=200. In fact, there is not a
large relative difference in the number of
trees between 100 and 350 if we plot the
results.

Here is a line graph showing the relationship
between the number of trees and mean
(inverted) logarithmic loss, with the standard
deviation shown as error bars:

Figure 7.3: number of tree versus loss

Tuning the size of
decision trees in
XGBoost
In gradient boosting, we can control the size
of decision trees, also called the number of
layers or depth.

Shallow trees are expected to have poor
performance because they capture few details
of the problem and are generally referred to
as weak learners. Deeper trees generally
capture too many details of the problem and
overfit the training dataset, limiting the
ability to make good predictions on new data.

Generally, boosting algorithms are
configured with weak learners. Decision trees
with few layers, sometimes as simple as just a
root node, are also called decision stumps
rather than a decision tree.

The maximum depth can be specified in
the XGBClassifier and XGBRegressor wrapper
classes for XGBoost in
the max_depth parameter. This parameter takes
an integer value and defaults to a value of 3.

We can tune this hyperparameter of XGBoost
using the grid search infrastructure in scikit-
learn on the Otto dataset. Now we will
evaluate the odd values for max_depth between
one and nine (1, 3, 5, 7, 9).

Each of the five configurations is evaluated
using 10-fold cross validation, resulting in 50
models being constructed. The full code
listing is provided here for completeness:

XGBoost on Otto dataset, Tune max_depth

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y =

LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

max_depth = range(1, 11, 2)

print(max_depth)

param_grid = dict(max_depth=max_depth)

kfold = StratifiedKFold(n_splits=10,

shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid,

scoring="neg_log_loss", n_jobs=-1, cv=kfold,

verbose=1)

grid_result = grid_search.fit(X,

label_encoded_y)

summarize results

print("Best: %f using %s" %

(grid_result.best_score_,

grid_result.best_params_))

means =

grid_result.cv_results_['mean_test_score']

stds =

grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds,

params):

 print("%f (%f) with: %r" % (mean, stdev,

param))

plot

pyplot.errorbar(max_depth, means, yerr=stds)

pyplot.title("XGBoost max_depth vs Log Loss")

pyplot.xlabel('max_depth')

pyplot.ylabel('Log Loss')

pyplot.savefig('max_depth.png')

Running this example prints the log loss for
each max_depth. The optimal configuration
was max_depth=5, resulting in a log loss of
0.001236:

Best: -0.001236 using {'max_depth': 5}

-0.026235 (0.000898) with: {'max_depth': 1}

-0.001239 (0.001730) with: {'max_depth': 3}

-0.001236 (0.001701) with: {'max_depth': 5}

-0.001237 (0.001701) with: {'max_depth': 7}

-0.001237 (0.001701) with: {'max_depth': 9}

Reviewing the plot of log loss scores, we can
see a marked jump
from max_depth=1 to max_depth=3 and then a pretty
even performance for the rest the values
of max_depth. Although the best score was
observed for max_depth=5, it is interesting to
note that there was practically little difference
between using max_depth=3 and max_depth=7.

This suggests a point of diminishing returns
in max_depth on a problem that you can tease
out using grid search. A graph
of max_depth values is plotted against
(inverted) logarithmic loss here:

Figure 7.4: Depth of tree versus loss

Tuning the number
of trees and max
depth in XGBoost
There is a relationship between the number of
trees in the model and the depth of each tree.
We would expect that deeper trees result in
fewer trees being required in the model, and
vice versa, where simpler trees (such as
decision stumps) require many more trees to
achieve similar results.

We can investigate this relationship
by evaluating a grid
of n_estimators and max_depth configuration
values. To prevent the evaluation from taking
too long, we will limit the total number of
configuration values evaluated. Parameters
are chosen to tease out the relationship rather
than optimize the model.

We will create a grid of four different
n_estimators values (50, 100, 150, 200) and four
different max_depth values (2, 4, 6, 8);
each combination will be evaluated using 10-
fold cross validation. A total of 4*4*10 or
160 models will be trained and evaluated.

The full code listing is here:

XGBoost on Otto dataset, Tune n_estimators

and max_depth

load data

data = read_csv('train.csv')

dataset = data.values

split data into X and y

X = dataset[:,0:94]

y = dataset[:,94]

encode string class values as integers

label_encoded_y =

LabelEncoder().fit_transform(y)

grid search

model = XGBClassifier()

n_estimators = [50, 100, 150, 200]

max_depth = [2, 4, 6, 8]

print(max_depth)

param_grid = dict(max_depth=max_depth,

n_estimators=n_estimators)

kfold = StratifiedKFold(n_splits=10,

shuffle=True, random_state=7)

grid_search = GridSearchCV(model, param_grid,

scoring="neg_log_loss", n_jobs=-1, cv=kfold,

verbose=1)

grid_result = grid_search.fit(X,

label_encoded_y)

summarize results

print("Best: %f using %s" %

(grid_result.best_score_,

grid_result.best_params_))

means =

grid_result.cv_results_['mean_test_score']

stds =

grid_result.cv_results_['std_test_score']

params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds,

params):

 print("%f (%f) with: %r" % (mean, stdev,

param))

plot results

scores =

numpy.array(means).reshape(len(max_depth),

len(n_estimators))

for i, value in enumerate(max_depth):

 pyplot.plot(n_estimators, scores[i],

label='depth: ' + str(value))

pyplot.legend()

pyplot.xlabel('n_estimators')

pyplot.ylabel('Log Loss')

pyplot.savefig('n_estimators_vs_max_depth.png')

Running the code produces a listing of the log
loss for each parameter pair:

Best: -0.001141 using {'n_estimators': 200,

'max_depth': 4}

-0.012127 (0.001130) with: {'n_estimators': 50,

'max_depth': 2}

-0.001351 (0.001825) with: {'n_estimators':

100, 'max_depth': 2}

-0.001278 (0.001812) with: {'n_estimators':

150, 'max_depth': 2}

-0.001266 (0.001796) with: {'n_estimators':

200, 'max_depth': 2}

-0.010545 (0.001083) with: {'n_estimators': 50,

'max_depth': 4}

-0.001226 (0.001721) with: {'n_estimators':

100, 'max_depth': 4}

-0.001150 (0.001704) with: {'n_estimators':

150, 'max_depth': 4}

-0.001141 (0.001693) with: {'n_estimators':

200, 'max_depth': 4}

-0.010341 (0.001059) with: {'n_estimators': 50,

'max_depth': 6}

-0.001237 (0.001701) with: {'n_estimators':

100, 'max_depth': 6}

-0.001163 (0.001688) with: {'n_estimators':

150, 'max_depth': 6}

-0.001154 (0.001679) with: {'n_estimators':

200, 'max_depth': 6}

-0.010342 (0.001059) with: {'n_estimators': 50,

'max_depth': 8}

-0.001237 (0.001701) with: {'n_estimators':

100, 'max_depth': 8}

-0.001161 (0.001688) with: {'n_estimators':

150, 'max_depth': 8}

-0.001153 (0.001679) with: {'n_estimators':

200, 'max_depth': 8}

We can see that the best result was achieved
with n_estimators=200 and max_depth=4, similar to
the best values found from the previous two
rounds of standalone parameter tuning
(n_estimators=250, max_depth=5).

We can plot the relationship between each
series of max_depth values for a
given n_estimators:

Figure 7.5: The relationship between max depth and number
of trees

The lines overlap, making it hard to see the
relationship, but generally we can see the
interaction we expect. Fewer boosted trees
are required with increased tree depth.

Further, we would expect the increased
complexity provided by deeper individual
trees to result in greater overfitting of the

training data. This would be exacerbated by
having more trees, in turn resulting in a lower
cross-validation score. We don’t see this here
as our trees are not that deep, nor do we
have too many. Exploring this expectation is
left as an exercise you can do yourself.

Summary
We started with a general description of
XGBoost, then we saw the advantages of
third-party libraries. We discussed various
parameters, which we can tune to obtain good
prediction accuracy from the classifier in
quite some detail. We also worked with two
practical applications. The first one was a
gentle introduction to using a library with
default parameters, and in the second
application, we saw how to tune two
important hyper parameters (number of trees
and depth of trees). This can help us apply the
algorithm on the complex datasets.

Overall, we have learned almost everything
needed to start working with XGBoost.
Again, practice makes a man perfect and it is
the only key to success. I encourage you to
use this library for your projects and try to
learn more using the available web resources.
It will help you to understand the limitations

of the algorithm in practical scenarios.

Stacked
Generalization
We have seen the basic introduction to the
process of stacking in Chapter 1, Introduction to
Ensemble Learning; stacking is an ensemble
of more than one classifiers. So what? We
have already seen bagging and boosting
techniques in which we have already used
many classifiers together, so what is the
difference in stacking and the other two?

Well, there is a huge difference between
them; in stacking, we combine multiple
classifiers based on different algorithms,
while in bagging and boosting, we combine
the same kind of classifiers. For example, in
bagging, we have combined many decision
trees together to get a prediction, while in
boosting, we have combined trees in
cascading through an error sharing
mechanism; however, in stacking, we usually

combine multiple classifiers from completely
different mechanisms such as a combination
of perceptron and logistic regression; what!
What are perceptron and logistic regression?
We will discuss them later in the chapter; let's
once again see the basic framework of
stacking, or in other words, stacked
generalization.

Figure 8.1: Stacking

Well, as we have seen in the previous
chapters, a single decision tree in boosting or
in bagging can help us only to make partial
predictions to reduce bias error from our
model; we need to increase the number of
classifiers in our ensemble framework. In the
same way, for complex datasets, a single
solution might not give us higher prediction
rate; for these situations, we need to combine

multiple different kinds of classifiers, where
the output of one classifier can be the input of
another. An interesting part of the stacking
process is that the new model is trained to
combine the prediction from previously
trained models on the same dataset.

These are the topics that we will be learning
in detail in this chapter :

Stacked generalization
Submodel training
Stacked generalization implementation
Practical application

Stacked
generalization
Stacked generalization or stacking is an
ensemble algorithm, where a new model is
trained to combine the predictions from two
or more models already trained on your
dataset.

The predictions from the existing models or
submodels are combined using a new model,
and as such, stacking is often referred to as
blending as the predictions from the
submodels are blended together.

It is typical to use a simple linear method to
combine the predictions for submodels, such
as simple averaging or voting to a weighted
sum using linear regression or logistic
regression.

Models that have their predictions combined

must have skill on the problem, but do not
need to be the best possible models. This
means that you do not need to tune the
submodels intently as long as the model
shows some advantage over a baseline
prediction.

It is important that submodels produce
different predictions, the so-called
uncorrelated predictions. Stacking works
best when the predictions that are combined
are all skillful, but skillful in different ways.
This may be achieved using algorithms that
use very different internal representations
(trees compared to instances) and/or models
trained on different representations or
projections of the training data:

Figure 8.2: The stack generalization framework

The preceding figure shows a typical stacking
framework, where we do not create different
samples out of training data to train
classifiers as we did in case of bagging, or we
do not share error information between the
classifiers as we did in boosting; instead, we
train each classifier with the entire training

data that is, each classifier is independent of
the other, which allows us to use classifiers
with different hypothesis as well as
algorithms. For example, we can use a linear
regression classifier and random forest for
training and then, we can combine their
prediction using a Support Vector Machine
(SVM).

I think I have talked enough, and you guys
have got a general understanding about the
process, so this is the time to implement the
procedure by ourselves and see what we can
achieve at the end of the entire process.

As we have discussed, stacked generalization
involves the following two parts:

Training of multiple submodels
Training a final model to combine the
results of the submodels

We will implement both preceding steps,
where we will train two submodels based on
k nearest neighbor classifier and perceptron

respectively; then, we will combine their
results using logistic regression. Sound
interesting? So, let's start the ride.

Submodel training
Let's start with the submodel training; we will
use two submodels, which will be trained
separately and independently. Our submodels
will be as follows:

KNN classifier
Perceptron

KNN classification
We will use the same KNN classifier that we
have implemented in Chapter 4, Random
Subspace and KNN Bagging. It is a non-
parametric algorithm, that means, it doesn't
learn any underlying distributions of the
dataset. It is originally derived from the k-
means clustering algorithm, which is another
very popular algorithm for unsupervised
classification of data. In k means clustering,
the similarity is the criteria to create clusters
out of the data.

The following is the procedure of the KNN
algorithm:

As it is a supervised learning algorithm,
we will provide data with the known
labels to the algorithm
Try to find similarity between unseen
instance and known data using a
distance metric and get most similar k

number of instance's label; these
instances are known as nearest
neighbors
After getting nearest neighbors, we can
get the label with the highest number,
which will be the winner

Figure 8.3: The KNN algorithm

The preceding figure shows the summary of
the algorithm; we will use the same code as
we have used previously. The code has three
definitions, as follows:

Distance calculation (Euclidean)
Estimate the neighbors

Make predictions using voting

Distance calculation
(Euclidean)
The following is the code for distance
calculation between two vectors:

def DistanceMetric(instance1, instance2,

isClass=None):

 #If Class variable is in the instance

 if isClass:

 length = len(instance1)-1

 else:

 length = len(instance1)

 #Initialize variable to store distance

 distance = 0

 #Lets run a loop to calculate element wise

differences

 for x in range(length):

 #Euclidean distance

 distance += pow((instance1[x] -

instance2[x]), 2)

return math.sqrt(distance)

Estimating the
neighbors
The following is the method for calculating
neighbors on the basis of distance metric:

import operator

def getNeighbors(trainingSet, testInstance, k):

 #Create a list variable to store distances

between test and

 #training instance.

 distances = []

 #Get distance between each instance in the

training set and the

 #test instance.

 for x in range(len(trainingSet)):

 #As we will going to have class

variable in the training set isClass will be

true

dist=DistanceMetric(testInstance,trainingSet[x],isClass=True)

 #Append the distance of each instance

to the distance list

 distances.append((trainingSet[x],

dist))

 #Sort the distances in ascending order

 distances.sort(key=operator.itemgetter(1))

 #Create a list to store the neighbors

 neighbors = []

 #Run a loop to get k neighbors from the

sorted distances.

 for x in range(k):

 neighbors.append(distances[x][0])

 return neighbors

Making predictions
using voting
The following function will be responsible
for getting predictions from neighbors using
voting; it will select the label with the
maximum neighbors as the prediction of the
classifier:

import operator

def getPrediction(neighbors):

 #Create a dictionary variable to store

votes from the neighbors

 #We will use class attribute as the

dictionary keys and their

 #occurrence as key value.

 classVotes = {}

 #Go to each neighbor and take the vote for

the class

 for x in range(len(neighbors)):

 #Get the class value of the neighbor

 response = neighbors[x][-1]

 #Create class key if its not there;

 #If class key is in the dictionary

increase it by one.

 if response in classVotes:

 classVotes[response] += 1

 else:

 classVotes[response] = 1

 #Sort the dictionary keys on the basis of

key values in descending order

 sortedVotes =

sorted(classVotes.iteritems(),

key=operator.itemgetter(1),

reverse=True)

 #Return the key name (class) with the

highest value

 return sortedVotes[0][0]

So, we have created our KNN classifier and
it's time to create the next sub classifier which
will be a perceptron; this will be a new kind
of classifier that you will learn; let's see what
perceptron is and how it works.

Perceptron
Perceptron is the building block of the
Artificial Neural Network (ANN); what is a
neural network? To get started, I'll explain a
type of artificial neuron called a perceptron.
Perceptrons were developed in the 1950s and
1960s by a scientist, Frank Rosenblatt,
inspired by earlier work by Warren
McCulloch and Walter Pitts. Let's get into
this discussion.

So, the first question that comes to the mind
is, what is perceptron? The perceptron is a
mathematical model of a biological neuron.
While in actual neurons, the dendrite receives
electrical signals from the axons of other
neurons, in the perceptron, these electrical
signals are represented as numerical values.
At the synapses, between the dendrite and
axons, electrical signals are modulated in
various amounts. This is also modeled in the
perceptron by multiplying each input value

by a value called the weight. An actual
neuron fires an output signal, only when the
total strength of the input signals exceeds a
certain threshold. We model this phenomenon
in a perceptron by calculating the weighted
sum of the inputs to represent the total
strength of the input signals and applying a
step function on the sum to determine its
output. As in biological neural networks, this
output is fed to other perceptrons.

Now, how does perceptron work? The
perceptron receives the input data multiplied
by random weights and adds a bias value; put
in Activation function to get a result. If the
result value is wrong, it uses backpropagation
and gradient descent to go back and tweak the
weights to get a correct result.

The following figure will give you a basic
understanding of the process:

Figure 8.4: Basic perceptron

Let's elaborate the concept with the help of
the following example:

Figure 8.4a: Perceptron in practical scenario

The preceding figures show that the
perceptron has three inputs, x1, x2, and x3. In
general, it could have more or fewer inputs.

Rosenblatt proposed a simple rule to compute
the output. He introduced weights, w1,w2,…,
real numbers expressing the importance of
the respective inputs to the output. The
neuron's output, zero or one, is determined by
whether the weighted sum, ∑jwjxj, is less than
or greater than some threshold value. Just like
the weights, a threshold is a real number,
which is a parameter of the neuron.

Let's put it in precise algebraic terms:

That's all there is to how a perceptron works!

That's the basic mathematical model. A way
you can think about the perceptron is that it's
a device that makes decisions by weighing up
evidence. Let me give an example. It's not a
very realistic example, but it's easy to
understand, and we'll soon get to more
realistic examples. Suppose there is a soccer

tournament near your city and you want to
watch the match this weekend. You love to
watch live soccer and want to plan it with
your friends; your decision to go for the
match most likely depends on the following
factors:

1. Is the weather good?
2. Does your group want to go with you?
3. Is the place of the tournament easy to

access?

We can represent these three factors by
corresponding binary variables x1, x2, and x3.
For instance, we'd have x1=1 if the weather is
good and x1=0 if the weather is bad.
Similarly, x2=1 if your friends want to go
with you and x2=0 if not, and similarly again
for x3.

Now, suppose you are a hardcore fan of
soccer and want to go, whether your friends
want to go with you or not, so you will be
less concerned about the second factor.

However, if the weather is bad, there are
fewer chances of the match taking place and
it is an important factor then. You can use
perceptrons to model this kind of decision-
making. Now, as you know which factors are
more important, you can give more weight to
them as the weather is a key factor. Suppose
we assign it a weight of six (w1=6), the larger
value of w1 indicates that the weather matters
a lot to you, much more than whether your
friends join you or the accessibility of the
venue. Finally, suppose you choose a
threshold of five for the perceptron. With
these choices, the perceptron implements the
desired decision-making model outputting
one whenever the weather is good and zero
whenever the weather is bad. It makes no
difference to the output whether your friends
want to go or whether the venue is nearby.

The following figure will give you a better
understanding of decision-making process as
we have seen that all our inputs are in binary
(zero and one), and we have decided the

weights W1=6, W2=3 and W3 = 1. Now, we
can prepare a result table for all of the
possible combinations (as shown in the
figure) in which the column will represent the
preceding three factors. If we multiply the
weights to the factors and add them together,
we will get the sum of the product value in
the last column. Now, you can see that when
the weather is good, you will surely go to
watch the match as we have decided five as
the threshold value:

Figure 8.5: The decision-making process

By varying the weights and threshold, we can
get different models of decision-making. For
example, suppose we chose a threshold of
three, then the perceptron would decide that
you should go to the match whenever the
weather was good or when both the match
was near you and your friends were willing to
join you. In other words, it'd be a different
model of decision-making. Dropping the
threshold means you're more willing to go to
the match.

Obviously, the perceptron isn't a complete
model of human decision-making! But what
the example illustrates is how a perceptron
can weigh different kinds of evidence in
order to make decisions. And it should seem
plausible that a complex network of
perceptrons could make quite subtle
decisions:

Figure 8.6: ANN using multilayer perceptrons

In this network, the first column of
perceptrons—we'll call it the first layer of
perceptrons—makes three very simple
decisions, by weighing the input evidence.
What about the perceptrons in the second
layer? Each of those perceptrons makes a
decision by weighing up the results from the
first layer of decision-making. In this way, a
perceptron in the second layer can make a
decision at a more complex and more abstract
level than perceptrons in the first layer, and
even more complex decisions can be made by
the perceptron in the third layer. In this way,
a many-layer network of perceptrons can
engage in sophisticated decision-making.

Incidentally, when I defined perceptrons, I
said that a perceptron has a single output
only. In the preceding network, the
perceptrons look like they have multiple
outputs. In fact, they're still single output. The
multiple output arrows are merely a useful
way of indicating that the output from a
perceptron is being used as the input to
several other perceptrons. It's less unwieldy
than drawing a single output line, which then
splits.

Let's simplify the way we describe
perceptrons. We will write ∑jwjxj as a dot
product, w⋅x≡∑jwjxj, where w and x are
vectors whose components are weights and
inputs, respectively. The second change is to
move the threshold to the other side of
inequality and to replace it by what's known
as the perceptron's bias, b≡−threshold.
Using the bias instead of the threshold, the
perceptron rule can be rewritten, as follows:

You can think of the bias as a measure of
how easy it is to get the perceptron to output,
a 1, or to put it in more biological terms, the
bias is a measure of how easy it is to get the
perceptron to fire. For a perceptron with a
really big bias, it's extremely easy for the
perceptron to output a 1. However, if the bias
is negative, then it's difficult for the
perceptron to output a 1. Obviously,
introducing the bias is only a small change in
how we describe perceptrons, but we'll see
later that it leads to further notational
simplifications. Because of this, in the
remainder of the book, we won't use the
threshold; we'll always use the bias.

As you can see from the result table,
perceptron works similar to the logic gates.
This means as we can get a universal gate, we
can simulate any kind of logic (for example,
OR, AND, and so on) from that gate; for
example, from NAND gate, which is known

as a universal gate, we can create any logic
using a NAND gate. Similarly, we can use
perceptrons as the universal decision maker.
Wait! It means that a perceptron is a NAND
gate, so what is the use of it as we already
have the NAND gates from decades ago!
However, the situation is better than this view
suggests. It turns out that we can
devise learning algorithms that can
automatically tune the weights and biases of a
network of artificial neurons. This tuning
happens in response to external stimuli
without the direct intervention of a
programmer. These learning algorithms
enable us to use artificial neurons in a way
that is radically different to conventional
logic gates. Instead of explicitly laying out a
circuit of NAND and other gates, our neural
networks can simply learn to solve problems,
sometimes problems where it would be
extremely difficult to directly design a
conventional circuit.

Training the
perceptron
Sounds quite interesting, and believe me, this
is interesting. If you remember, we have
discussed the concept of training a machine
learning system in a gradient boosting
machine, where you learned that training a
system is nothing but minimization of the
objective function, which is always the error
of the system itself. So, how does it imply in
the current case? Well, during the discussion
of GBM, we have used the gradient-based
approach for adding more trees to the system;
here, we will use gradient descent to update
the weights of the system.

Let's see some basics of the gradient descent
before implementing it.

Gradient descent
As we have seen earlier in GBM, our
objective function to minimize is an error
between predicted and actual output. Let's
rewrite the equation for this:

 equation (1)

Our final goal always is to reduce this error
by improving our predictions; for
perceptrons, error is simply a function of two
variables that is weights and bias, so we can
rewrite the equation, as follows:

equation (2)

From now on, we will call the preceding

objective function as the cost function, which
is the combination of weights and bias. This
cost function can tell us how accurate our
prediction is; if the cost function is high, it
shows the poor reconstruction of data, and
lower cost function signifies higher
prediction accuracy. In equation (2), the
predicted output is:

 equation (3)

As you can see in the preceding equation, if
we make changes in W and b, the change will
directly reflect on predictions. So, we can
modify the preceding equation as follows:

 equation (4)

This is a very important concept toward
optimization. As the preceding equation

shows the direct impact of modifying W and
b, it suggests us that if we can find the
optimal values of W and b, we can actually
minimize the cost function.

So, the simplest way to find out the optimal
value of W and b is random guessing. We can
choose a scale of real numbers and try each
value pair to find out the best pair of W and b.
Don't you think it is a good idea? Certainly,
there are many doubts about this concept of
random guessing itself and the very first thing
that comes to the mind is, where to start the
scale? Suppose you say from -1 to 1, then
what if the best pair values are beyond the
range? Suppose we have our best pair inside
the range, now how you will decide whether
the pair you have got is the best pair? See,
random guessing does not help you much as
it does not guarantee you an optimal solution.
So, what to do? Well, to know this, let's see
an example if it can help us to find out the
solution to our problem.

Suppose you have planned a trip to a hill

station and you have reached it on time, but
in the night, you have missed the last bus
from the hill station to your town. Now, you
want to get down from the hill; what will you
do? The best possible way is to start moving
in the direction of descent of the hill; if you
continuously move toward the descend, you
will surely reach the bottom of the hill:

Figure 8.7: The gradient descent intuition

We can apply the same thing to our
mathematical system, too! How? Let's
understand this.

As you already know, we have a cost

function C(W,b) with two variables W and b;
our task is to find the pair of value for W and
b, which can minimize this cost function.
Now, if we assume the cost function as a
three-dimensional surface, it will look similar
to the following figure:

Figure 8.8: The surface plot of cost function

Now, suppose we started with some random
values of W and b, which is shown in the
figure as a star; we will choose the next value
such that our cost follows the slope (gradient)
toward the descent. If we continue toward the
direction of the gradient, we will reach the
minimum surface. The following figure
summarizes the process:

Figure 8.9: The cost function optimization using gradient
descent

Now, the question is how to apply a gradient
descent to minimize the cost function? Let's
see a small derivation for this; I will try to
avoid the mathematics here to make it simple.

Let's break down the problem; as we know
whenever we will change the (W,b) pair, it
will reflect the change in the cost function as
well. So, when we start descending a hill, we
will make small changes in W and b that will
change the cost function as follows:

 equation (5)

Here, ∆W and ∆b are small amount changes
made in W and b; to see their effect, we will
take the partial derivative of cost function C
with respect to W and b. We will find a way
of choosing ∆W and ∆b, so we can make ∆C
negative so that we can go downhill. To
figure out how to make such changes, let's
consider a ∆v vector of changes in variable W
and b; further, we can write ∆v = (∆W, ∆b)T,
where T is the transpose operation for
converting rows into columns. Similarly, we
can also write the gradient of C as a vector of
the partial derivative, as follows:

 equation (6)

Where ∇C is gradient vector, with these
definitions, expression (5) can be rewritten as
follows:

equation (7)

This equation helps to explain why ∇ C is
called the gradient vector: ∇ C relates
changes in v to changes in C, just as we'd
expect something called a gradient to do.
However, what's really exciting about the
equation is that it lets us see how to
choose Δv so as to make ∇ C negative. In
particular, suppose we choose the following
equation:

 equation (8)

Here, η is a small, positive parameter (also
known as learning rate), then, the equation
(7) tells us that ∆C ≈ -η∇ C .∇ C = -η
ǁ∇Cǁ2 because of ǁ∇C ǁ2 ≥0; this guarantees
that ∆C ≤ 0 that is, C will always decrease,
never increase. If we change v according to
the equation (8), this is exactly the property
we wanted! So, we will use the equation (8)
to compute a value for ∆v; then, move the
value of v by that amount:

 equation (9)

Then, we'll use this update rule again to make
another move. If we keep doing this over and
over, we'll keep decreasing C until—we hope
—we reach a global minimum.

To make gradient descent work correctly, we
need to choose the learning rate η to be small
enough that equation (7) is a good
approximation. If we don't, we might end up
with ΔC>0, which obviously would not be
good! At the same time, we don't want η to be
too small, since that will make the
changes Δv tiny, and thus the gradient descent
algorithm will work very slowly. In practical
implementations, η is often varied so that
equation (7) remains a good approximation,
but the algorithm isn't too slow. We'll see
later how this works.

You can think of this update rule
as defining the gradient descent algorithm. It
gives us a way of repeatedly changing the
position v, in order to find a minimum of the

function C. The rule doesn't always work -
several things can go wrong and prevent
gradient descent from finding the global
minimum of C. But, in practice, gradient
descent often works extremely well, and in
neural networks, we'll find that it's a powerful
way of minimizing the cost function and
helping the net learn.

How can we apply gradient descent to learn
in a perceptron? The idea is to use gradient
descent to find the weights wk and biases
bl that minimize the cost in equation (2). To
see how this works, let's restate the gradient
descent update rule, with the weights and
biases replacing the variable v. In other
words, our position now has
components wk and bl, and the gradient
vector ∇ C has corresponding
components ∂C/∂wk and ∂C/∂bl. Let's write it
for our variable update:

By repeatedly applying this update rule, we
can roll down the hill and hopefully, find a
minimum of the cost function. In other
words, this is a rule that can be used to learn
in a perceptron.

Stochastic gradient
descent
An idea called stochastic gradient
descent can be used to speed up learning.
The idea is to estimate the gradient ∇ C by
computing ∇ Cx for a small sample of
randomly chosen training inputs. By
averaging over this small sample, it turns out
that we can quickly get a good estimate of the
true gradient ∇ C, and this helps speed up
gradient descent and thus learning.

To make these ideas more precise, stochastic
gradient descent works by randomly picking
out a small number mm of randomly chosen
training inputs. We'll label these random
training inputs X1, X2,…, Xm and refer to them
as a mini-batch. Provided the sample
size mm is large enough, we expect that the
average value of ∇ CXj will be roughly equal

to the average over all ∇ Cx that is, as
follows:

Here, the second sum is over the entire set of
training data; swapping sides, we get:

Confirming this, we can estimate the overall
gradient by computing gradients just for the
randomly chosen mini-batch.

To connect this explicitly to learning in
neural networks, suppose wk and bl denote the
weights and biases in our neural network.
Then, stochastic gradient descent works by
picking out a randomly chosen mini-batch of
training inputs and training with those:

Here, the sum is over all the training
examples xj in the current mini-batch; then,
we pick out another randomly chosen mini-
batch and train with those and so on, until
we've exhausted the training inputs, which is
said to complete an epoch of training. At this
point, we start over with a new training
epoch.

Implementation of
perceptron
Now, as we have enough mathematical
description of perceptron algorithm and its
training, we are ready to implement it in a
function. In this section, we will implement
our first perceptron algorithm along with its
training, and it is worth noting that this is our
first step to make an ANN, so let’s not waste
our time and let's start the implementation.

As we have discussed quite a lot, a
perceptron is nothing but a linear
combination of weights and input instances
with some bias value, and it can be written as
follows:

activation = sum(weight_i * x_i) + bias

Here, x_i is the ith variable value of the input
instance and weight_i is the weight value

corresponding to the variable. We will add a
bias value to sum of the product of all the
variables and weights in the instance and we
will call it activation of perceptron. The
activation is then transformed into an output
value or prediction using a transfer function,
such as the step transfer function:

prediction = 1.0 if activation >= 0.0
else 0.0

In this way, the perceptron is a classification
algorithm for problems with two classes (zero
and one), where a linear equation (like or
hyperplane) can be used to separate the two
classes.

It is closely related to linear regression and
logistic regression that make predictions in a
similar way (for example, a weighted sum of
inputs).

The weights of the perceptron algorithm must
be estimated from your training data using
stochastic gradient descent.

For the perceptron algorithm, we will update
the weights in each iteration with the help of
the following equation:

w = w + learning_rate * (expected -
predicted) * x

Here, w is the weight being
optimized, learning_rate is a learning rate
that you must configure (for example,
0.01), (expected – predicted) is the prediction
error for the model on the training data
attributed to the weight, and x is the input
value for which we want to update the
weights.

So, here, (expected-predicted) is the gradient
that will give us the direction to which we
should move, and learning_rate will helps us
to decide how fast we want to move toward
the descent.

I want to discuss the behavior of learning
with you guys, as it is a very crucial
parameter that decides the speed of

convergence. Anybody can be misled by this
and want to put a higher learning rate, so one
can find the optimization of cost function
faster. However, this is not the actual case;
let’s understand it with the following figure:

Figure 8.10: Variation of learning rate

The preceding figure shows three different
cases of learning rates:

When we choose an optimum learning
rate, our function starts gradually
decreasing and reaches the global
minimum
In case of a high learning rate, our

function takes very long steps toward the
descent and misses the global minimum
because of the long steps and just starts
wandering here and there
When we input a learning rate too slow,
the function starts descending very
slowly and may be trapped in a local
minimum because it thinks that this is
the best minimum value of the cost
function for the given weight and bias
pairs

So, we should choose our function's learning
rate very carefully, so we can avoid the
preceding two conditions.

Now, we will add a predict method to our
perceptron algorithm that will be responsible
for calculating the first activation and then,
return a 1 or 0 based on the activation's value:

Make a prediction with weights

def predict(row, weights):

 #Row is the input instance

 #We will consider first weight as the bias

for simplified the calculations

 activation = weights[0]

 #Now run a loop to multiply each attribute

value of the instance with the

 weight

 #And add the result to the activation of

previous attribute

 for i in range(len(row)-1):

 activation += weights[i + 1] * row[i]

 #Here we will return 1 if activation is a

non negative value and zero in

 other case

return 1.0 if activation >= 0.0 else 0.0

 Let's test the preceding function on a toy
dataset:

test predictions

dataset = [[2.7810836,2.550537003,0],

 [1.465489372,2.362125076,0],

 [3.396561688,4.400293529,0],

 [1.38807019,1.850220317,0],

 [3.06407232,3.005305973,0],

 [7.627531214,2.759262235,1],

 [5.332441248,2.088626775,1],

 [6.922596716,1.77106367,1],

 [8.675418651,-0.242068655,1],

 [7.673756466,3.508563011,1]]

weights = [-0.1, 0.20653640140000007,

-0.23418117710000003]

for row in dataset:

 prediction = predict(row, weights)

print("Expected=%d, Predicted=%d" % (row[-1],

prediction))

There are two inputs values (X1 and X2) and

three weight values (bias, w1, and w2). The
activation equation we have modeled for this
problem is as follows:

activation = (w1 * X1) +
(w2 * X2) + bias

Alternatively, with the specific weight values
we chose by hand are as follows:

activation = (0.206 * X1)
+ (-0.234 * X2) + -0.1

Running this function, we get predictions that
match the expected output (y) values:

Expected=0, Predicted=0

Expected=0, Predicted=0

Expected=0, Predicted=0

Expected=0, Predicted=0

Expected=0, Predicted=0

Expected=1, Predicted=1

Expected=1, Predicted=1

Expected=1, Predicted=1

Expected=1, Predicted=1

Expected=1, Predicted=1

Now, we are ready to implement the
stochastic gradient descent to optimize our
weight values. We can estimate the weight

values for our training data using the
stochastic gradient descent.

Stochastic gradient descent requires two
parameters:

Learning rate: Used to limit the amount
each weight is corrected each time it is
updated
Epochs: The number of times to run
through the training data while updating
the weight

These, along with the training data will be the
arguments to the function.

There are three loops we need to perform in
the function:

1. Loop over each epoch
2. Loop over each row in the training data

for an epoch
3. Loop over each weight and update it for

a row in an epoch

As you can see, we update each weight for

each row in the training data, each epoch.

Weights are updated based on the error the
model made. The error is calculated as the
difference between the expected output value
and the prediction made with the candidate
weights.

There is one weight for each input attribute
and these are updated in a consistent way, for
example:

w(t+1)= w(t) + learning_rate *
(expected(t) - predicted(t)) * x(t)

The bias is updated in a similar way, except
without an input as it is not associated with a
specific input value:

bias(t+1) = bias(t) +
learning_rate * (expected(t) -
predicted(t))

Now, we can put all of this together. The
following is a function
named train_weights() that calculates the

weight values for a training dataset using
stochastic gradient descent:

Estimate Perceptron weights using stochastic

gradient descent

def train_weights(train, l_rate, n_epoch):

 #Lets initialize the weights by 0

 weights = [0.0 for i in

range(len(train[0]))]

 #We will update the weights for given

number of epoch

 for epoch in range(n_epoch):

 #Extract each row from the training set

 for row in train:

 #Predict the value for the instance

 prediction = predict(row, weights)

 #Calculate the difference(gradient)

between actual and predicted

 value

 error = row[-1] - prediction

 #Update the bias value using given

learning rate and error

 weights[0] = weights[0] + l_rate *

error

 #Update the weights for each

attribute using learning rate

 for i in range(len(row)-1):

 weights[i + 1] = weights[i + 1]

+ l_rate * error * row[i]

 #Return the updated weights and biases

 return weights

Let's try to update the weight:

Calculate weights

dataset = [[2.7810836,2.550537003,0],

 [1.465489372,2.362125076,0],

 [3.396561688,4.400293529,0],

 [1.38807019,1.850220317,0],

 [3.06407232,3.005305973,0],

 [7.627531214,2.759262235,1],

 [5.332441248,2.088626775,1],

 [6.922596716,1.77106367,1],

 [8.675418651,-0.242068655,1],

 [7.673756466,3.508563011,1]]

l_rate = 0.1

n_epoch = 5

weights = train_weights(dataset, l_rate,

n_epoch)

print(weights)

We will use a learning rate of 0.1 and train the
model for only 5 epochs or 5 exposures of
weights to the entire training dataset.

Running the example prints a message of
each epoch with the sum squared error for that
epoch and the final set of weights:

epoch=0, lrate=0.100, error=2.000

epoch=1, lrate=0.100, error=1.000

epoch=2, lrate=0.100, error=0.000

epoch=3, lrate=0.100, error=0.000

epoch=4, lrate=0.100, error=0.000

[-0.1, 0.20653640140000007,

-0.23418117710000003]

You can see how the problem is learned very
quickly by the algorithm.

So, we have the KNN algorithm in our hand
and now we have the perceptron too; it's time
to build the algorithm for the last block of our
stacked generalization process logistic
regression.

Logistic regression
Logistic regression is a classification
algorithm. It is used to predict a binary
outcome (1/0, yes/no, or true/false) given a
set of independent variables. To represent
binary/categorical outcome, we use dummy
variables. You can also think of logistic
regression as a special case of linear
regression when the outcome variable is
categorical, where we use a log of odds as a
dependent variable. In simple words,
it predicts the probability of occurrence of an
event by fitting the data to a logit function.

Logistic regression is a part of a larger class
of algorithms known as Generalized Linear
Model (GLM). In 1972, Nelder and
Wedderburn proposed this model with an
effort to provide a means of using linear
regression to the problems that were not
directly suited for application of linear
regression. In fact, they proposed a class of

different models (linear regression, ANOVA,
Poisson regression, and so on) that included
logistic regression as a special case.

The logistic function
The logistic function, also called the sigmoid
function, was developed by statisticians to
describe properties of population growth in
ecology, rising quickly and maxing out at the
carrying capacity of the environment. It's an
S-shaped curve that can take any real-valued
number and map it into a value between 0
and 1, but never exactly at those limits:

1 / (1 + e^-value)

Here, e is the base of the natural
logarithms (Euler's number or the exp()
function in your spreadsheet) and the value is
the actual numerical value that you want to
transform. The following is a plot of numbers
between -5 and 5 transformed into a range of
0 and 1 using the logistic function:

Figure 8.11: The logistic or sigmoid function

The preceding figure shows the form of a
logistic function.

Representation of
logistic regression
Logistic regression uses an equation as a
representation, very much like the linear
regression.

Input values (x) are combined linearly using
weights or coefficient values (referred to as
the Greek capital letter, beta) to predict an
output value (y). A key difference from the
linear regression is that the output value
being modeled is a binary value (0 or 1),
rather than a numeric value.

The following is an example of a logistic
regression equation:

Here, y is the predicted output, b0 is the bias

or intercept term, and b1 is the coefficient for
the single input value (x). Each column in
your input data has an associated
b coefficient (a constant real value) that must
be learned from your training data.

The actual representation of the model that
you would store in memory or in a file is the
coefficient in the equation (the beta value or
b).

Modeling probability
using logistic
regression
Logistic regression models the probability of
the default class (for example, the first class).

For example, if we are modeling people's sex
as male or female from their height, then the
first class could be male and the logistic
regression model could be written as the
probability of male given a person's height, or
more formally:

Written another way, we are modeling the
probability that an input (x) belongs to the
default class (y=1), we can write this
formally as:

Are we predicting probabilities? I thought
logistic regression was a classification
algorithm?

Note that the probability prediction must be
transformed into a binary value (0 or 1) in
order to actually make a probability
prediction.

Logistic regression is a linear method but the
predictions are transformed using the logistic
function. The impact of this is that we can no
longer understand the predictions as a linear
combination of inputs as we can with linear
regression, for example, continuing on from
the previous example, the model can be stated
as:

I don't want to dive into the math too much,
but we can turn around the preceding
equation as follows (remember, we can

remove e from one side by adding a natural
logarithm (ln) to the other):

This is useful because we can see that the
calculation of the output on the right is linear
again (just like linear regression), and the
input on the left is a log of the probability of
the default class.

This ratio on the left is called the odds of the
default class (it's historical that we use odds,
for example, odds are used in horse racing
rather than probabilities). Odds are calculated
as a ratio of the probability of the event
divided by the probability of not the event,
for example, 0.8/(1-0.8), which has the odds
of 4. So, we could instead write the following
equation:

Because the odds are log transformed, we call
this left-hand side the log-odds or the probit (

https://en.wikipedia.org/wiki/Probit). It is possible to
use other types of functions for the transform
(which is out of scope, but as such it is
common to refer to the transform that relates
the linear regression equation to the
probabilities as the link function, for
example, the probit link function.

We can move the exponent back to the right
and write it as follows:

All of this helps us understand that indeed the
model is still a linear combination of the
inputs, but that this linear combination relates
to the log-odds of the default class.

https://en.wikipedia.org/wiki/Probit

Learning the model
The coefficients (beta values b) of the logistic
regression algorithm must be estimated from
your training data. This is done using the
maximum-likelihood estimation.

The maximum-likelihood estimation is a
common learning algorithm used by a variety
of machine learning algorithms, although it
does make assumptions about the distribution
of your data (more on this when we talk
about preparing your data).

The best coefficients would result in a model
that would predict a value very close to 1 (for
example, male) for the default class and a
value very close to 0 (for example, female)
for the other class. The intuition of
maximum-likelihood for logistic regression is
that a search procedure seeks values for the
coefficients (beta values) that minimize the
error in the probabilities predicted by the

model to those in the data (for example, the
probability of 1 if the data is the primary
class).

We are not going to go into the math of
maximum likelihood. It is enough to say that
a minimization algorithm is used to optimize
the best values for the coefficients for your
training data. This is often implemented in
practice using the efficient numerical
optimization algorithm (like the Quasi-
Newton method).

We will implement it by ourselves from
scratch using a much simpler gradient descent
algorithm.

Prediction using
logistic regression
Making predictions with a logistic regression
model is as simple as plugging in numbers
into the logistic regression equation and
calculating a result. Let’s make this concrete
with a specific example.

Let’s say we have a model that can predict
whether a person is male or female based on
their height (completely fictitious). Given a
height of 150 cm, is the person male or
female?

You have learned that the coefficients of b0 =
-100 and b1 = 0.6. Using the preceding
equation, we can calculate the probability of
male given a height of 150 cm or, more
formally, P(male|height=150):

y = exp(-100 +

0.6*150) / (1 +
exp(-100 + 0.6*X))

y = 0.0000453978687

In practice, we can use the probabilities
directly. Because this is a classification and
we want a crisp answer, we can snap the
probabilities to a binary class value, for
example:

0 if p(male) < 0.5
1 if p(male) >= 0.5

Now that we know how to make predictions
using logistic regression, let's look at how we
can prepare our data to get the most from the
technique.

Implementation of
algorithm
Like the perceptron algorithm, logistic
regression uses a set of weights, called
coefficients, as the representation of the
model, and like the perceptron algorithm, the
coefficients are learned by iteratively making
predictions on the training data and updating
them.

The following are the helper functions for
implementing the logistic regression
algorithm.
The logistic_regression_model() function is used
to train the coefficients on the training dataset
and logistic_regression_predict() is used to
make a prediction for a row of data:

Make a prediction with coefficients

def logistic_regression_predict(model, row):

 #First weight of the model will be bias

similar as Perceptron function

 yhat = model[0]

 #We will run a loop to multiply each

attribute value with the corresponding

 weights

 #This is similar to activation calculation

in perceptron algorithm

 for i in range(len(row)-1):

 yhat += model[i + 1] * row[i]

 #Here we will apply logistic function on

the linear combination of weights

 and attributes

 #This is the place where linear and

logistic regression differs

 return 1.0 / (1.0 + exp(-yhat))

As you can see, the preceding function is
very similar to perceptron's predict function,
except here, we are adding nonlinearity to the
activation using the exponential.

Now, you will learn weights for the preceding
function using the stochastic gradient descent
algorithm as we have done in the perceptron
algorithm:

def logistic_regression_model(train,

l_rate=0.01, n_epoch=5000):

 #Initialize the weights with the zero

values

 coef = [0.0 for i in range(len(train[0]))]

 #Repeat the procedure for given number of

epochs

 for epoch in range(n_epoch):

 #Get prediction for each row and update

weights based on error value

 for row in train:

 #Predict y for the given x

 yhat =

logistic_regression_predict(coef, row)

 #Get the error value

(gradient/slope/change)

 error = row[-1] - yhat

 #Apply gradient descent here to

update the weights and biases

 #Update Bias first

 coef[0] = coef[0] + l_rate * error

* yhat * (1.0 - yhat)

 #Now update the Weights

 for i in range(len(row)-1):

 coef[i + 1] = coef[i + 1] +

l_rate * error * yhat * (1.0 - yhat)

 * row[i]

 #Return the trained weights and biases

 return coef

Now, we are ready to implement our very
first stacked generalization algorithm.

Stacked generalization
implementation
For a machine learning algorithm, learning
how to combine predictions is much the same
as learning from a training dataset.

A new training dataset can be constructed
from the predictions of the submodels, as
follows:

Each row represents one row in a
training dataset
The first column contains predictions for
each row in the training dataset made by
the first submodel, such as KNN
The second column contains predictions
for each row in the training dataset made
by the second submodel, such as the
perceptron algorithm
The third column contains the expected
output value for the row in the training

dataset

The following is a contrived example of what
a constructed stacking dataset may look like:

kNN, Per, Y

0, 0 0

1, 0 1

0, 1 0

1, 1 1

0, 1 0

A machine learning algorithm, such as
logistic regression can then be trained on this
new dataset. In essence, this new meta-
algorithm learns how to best combine the
prediction from multiple submodels.

The following is a function
named to_stacked_row() that implements this
procedure for creating new rows for this
stacked dataset.

The function takes a list of models as input;
these are used to make the predictions. The
function also takes a list of functions as input,
one function used to make a prediction for
each model. Finally, a single row from the

training dataset is included.

A new row is constructed one column at a
time. Predictions are calculated using each
model and the row of training data. The
expected output value from the training
dataset row is then added as the last column
to the row:

Make predictions with sub-models and

construct a new stacked row

def to_stacked_row(models, predict_list, row):

 #Let's Create an empty list to store

predictions from sub models

 stacked_row = list()

 #Run a loop to fetch stored models in the

List

 for i in range(len(models)):

 #Start prediction for each row by each

model

 prediction = predict_list[i](models[i],

row)

 #Store the prediction in the list

 stacked_row.append(prediction)

 #Append class values to the new row

 stacked_row.append(row[-1])

 #Extend the old row aby adding stacked row

 return row[0:len(row)-1]

On some predictive modeling problems, it is

possible to get an even larger boost by
training the aggregated model on both the
training row and the predictions made by
submodels.

This improvement gives the aggregator
model both the context of all of the data in
the training row to help determine how and
when to best combine the predictions of the
submodels.

We can update our to_stacked_row() function to
include this by aggregating the training row
(minus the final column) and the stacked row
as created previously.

The following is an updated version of
the to_stacked_row() function that implements
this improvement:

Make predictions with sub-models and

construct a new stacked row

def to_stacked_row(models, predict_list, row):

 #Let's Create an empty list to store

predictions from sub models

 stacked_row = list()

 #Run a loop to fetch stored models in the

List

 for i in range(len(models)):

 #Start prediction for each row by each

model

 prediction = predict_list[i](models[i],

row)

 #Store the prediction in the list

 stacked_row.append(prediction)

 #Append class values to the new row

 stacked_row.append(row[-1])

 #Extend the old row aby adding stacked row

 return row[0:len(row)-1] + stacked_row

It is a good idea to try both approaches to
your problem to see which works best.

Now that we have all of the pieces for
stacked generalization, we can apply it to a
real-world problem.

Practical application
– Sonar dataset
(Mine and Rock
prediction)
We will use a publicly available dataset of
sonar signal returns from different surfaces;
the dataset has 208 observations and 60
features to classify the instances into two
groups mine (M) and rock (R). The variables
are in the range of 0 to 1.

Here is the detail of the dataset:

Location:https://archive.ics.uci.edu/ml/dataset

s/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks);

Data set Name: Connectionist Bench (Sonar,

Mines vs. Rocks) Data Set

Number of Instances: 208

Attributes characteristics: Float

Number of attributes: 60

Number of classes: 2

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

More information
about the dataset
The file sonar.mines contains 111 patterns
obtained by bouncing sonar signals off a
metal cylinder at various angles and under
various conditions. The file sonar.rocks
contains 97 patterns obtained from rocks
under similar conditions. The transmitted
sonar signal is a frequency-modulated chirp,
rising in frequency. The dataset contains
signals obtained from a variety of different
aspect angles, spanning 90 degrees for the
cylinder and 180 degrees for the rock. Each
pattern is a set of 60 numbers in the range 0.0
to 1.0. Each number represents the energy
within a particular frequency band, integrated
over a certain period of time. The integration
aperture for higher frequencies occurs later in
time since these frequencies are transmitted
later during the chirp. The label associated

with each record contains the letter R if the
object is a rock and M if it is a mine (metal
cylinder). The numbers in the labels are in the
increasing order of the aspect angle but they
do not encode the angle directly.

The example assumes that a CSV copy of the
dataset is in the current working directory
with the filename sonar.all-data.csv.

The dataset is first loaded, the string values
converted to numeric, and the output column
is converted from strings to the integer values
of 0 to 1. This is achieved with helper
functions load_csv(), str_column_to_float() and str_column_to_int()
load, and the dataset is prepared.

We will use the k-fold cross-validation to
estimate the performance of the learned
model on the unseen data. This means that we
will construct and evaluate k models and
estimate the performance as the mean model
error. Classification accuracy will be used to
evaluate the model. These behaviors are
provided in

the cross_validation_split(), accuracy_metric(),
and evaluate_algorithm() helper functions. We
have used these helper functions multiple
times, so I don't think that it is required to
discuss this functions working here; you can
get the full code at the end of the chapter.

We will use the KNN, perceptron, and
logistic regression algorithms implemented
previously. We will also use our technique
for creating the new stacked dataset defined
in the previous step.

A new function name stacking() is developed.
This function does four things:

1. It first trains a list of models (KNN and
perceptron)

2. It then uses the models to make
predictions and create a new stacked
dataset

3. It then trains an aggregator model
(logistic regression) on the stacked
dataset

4. It then uses the submodels and the

aggregator model to make predictions on
the test dataset

Stacked Generalization Algorithm

def stacking(train, test):

 #Let's define the sub model first

 model_list = [knn_model, perceptron_model]

 #We will create a prediction list to create

new row

 predict_list = [knn_predict,

perceptron_predict]

 #Create an empty list to store the trained

models

 models = list()

 #Lets train each sub model individually on

the dataset

 for i in range(len(model_list)):

 model = model_list[i](train)

 models.append(model)

 #Create a new stacked data set from

prediction of sub models

 stacked_dataset = list()

 for row in train:

 #Get new row

 stacked_row = to_stacked_row(models,

predict_list, row)

 #Append it to new dataset

 stacked_dataset.append(stacked_row)

 #We will train our final classifier on the

stacked dataset

 stacked_model =

logistic_regression_model(stacked_dataset)

 #lets create a list of prediction of the

stacked output

 predictions = list()

 #Here we will combine all the classifier

together to make stack of

 classifiers

 for row in test:

 #Get new row from prediction of sub

models

 stacked_row = to_stacked_row(models,

predict_list, row)

 #Append new row to the new dataset

 stacked_dataset.append(stacked_row)

 #Classify the new row using final

classifier

 prediction =

logistic_regression_predict(stacked_model,

stacked_row)

 #As final classifier gives a continuous

value round it to nearest integer

 prediction = round(prediction)

 #Append the prediction to the final

list of predictions

 predictions.append(prediction)

 return predictions

Now, it is time to put it all together and see
the results:

Test stacking on the sonar dataset

seed(1)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

n_folds = 5

scores = evaluate_algorithm(dataset, stacking,

n_folds)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' %

(sum(scores)/float(len(scores))))

A k value of 5 was used for cross-validation,
giving each fold 208/3 = 69.3 or just under 70
records to be evaluated upon each iteration.

I evaluated each submodel separately on the
training dataset and achieved 74.879% for KNN
and 72.464% for the perceptron algorithm; both
algorithms are better than the baseline
accuracy of 53%.

Training logistic regression on the stacked
dataset without the training rows for context
achieves an accuracy of 75.845%. Including the
training rows in the stacked dataset gives a
further bump to 76.329%.

Running the example prints the scores and
mean of the scores for the final configuration:

Scores: [65.85365853658537, 85.36585365853658,

75.60975609756098, 82.92682926829268,

75.60975609756098]

 Mean Accuracy: 77.073%

Summary
So, we have successfully implemented our
stacked generalization problem. We started
with a simple introduction to the stacking
process. As this chapter was towards the
introduction, we covered linear classifiers in
the combination; we created a stack of three
classifiers. Two of them were submodels and
the last one was an aggregator that was
responsible for combining the results of the
previous two to generate the final prediction.
During the process, you learned two very
useful classification models— perceptron and
logistic regression. As the perceptron is the
basic building block of an ANN, it is a widely
used concept in the current trends of machine
learning algorithms. We saw how gradient
descent algorithm can help us train a single
perceptron for a prediction purpose. Later in
the chapter, we saw the core concepts of
logistic regression, which is a regression

algorithm that can be used for classification
purposes, too. It is an extension of the linear
regression algorithm by inducing nonlinearity
using the logistic function. We trained our
first logistic regression model using the same
gradient descent as it is quite easy to
understand and implement; finally, we
created a stack and applied it to a practical
dataset successfully.

Now, what next? I encourage you to keep
practicing the concepts you learned in this
chapter, as stacking is the most used
ensemble algorithm. It allows you to handle
almost every complexity in datasets. I
encourage you to explore more algorithms to
optimize cost functions such as the least of
squares and the Quasi-Newton methods, and
always keep an eye on the available online
resources regarding the topic.

Stacked
Generalization – Part
2
In the previous chapter, we saw how to do
stacking of multiple classifiers using a
combination of linear (perceptron and logistic
regression) and nonlinear (KNN) algorithms.
In this chapter, we will implement the
stacking of nonlinear classifiers as well as
learn how to improve a classifier's accuracy
by selecting features that are more significant
in the particular dataset.

We will start with feature selection first. I
want to clarify to you about this topic; it is
directly not related to model stacking, but we
will build a solution with the use of a
classifier to select the features, and then we
will classify the modified dataset using
another classifier. Although the process looks

like model stacking, it is not a conventional
model stacking process. However, we can
reduce the complexity of our data as well as
classifier by this procedure.

So, let's start with the feature selection
process first; then, we will proceed to the
stacking of nonlinear algorithms.

Feature selection
Feature selection is also known as attribute
selection in the machine learning community.
As it is quite clear from its name itself, it is
the process of selecting attributes from a
dataset that are more significant in the
decision-making process. In other words, we
train our classifier only on those features that
reduce the correlation between the features so
that we can avoid redundancy in our dataset.

The following figure shows a generalized
framework for any machine learning system,
where you can see that feature selection
appears just before classifier training:

Figure 9.1: A general machine learning framework

Let's understand the feature selection process.
Suppose you want to classify animals, for
example, based on a plethora of relevant
collected data. You quickly realize that all
sorts of potential data attributes, or features,
are relatively unhelpful for classification. For
example, given that most living creatures
have precisely one heart, this particular
feature would not be beneficial from a
learning perspective. On the other hand, an
attribute denoting whether a given animal is
hoofed or not would likely be a powerful
predictor.

Further, using all of these irrelevant attributes
mixed with powerful predictors may actually
have a negative effect on the resulting model.
And we need not say anything about the
increased training times that may come along
with the inclusion of useless attributes, or the
overfitting that may occur on the training
data.

In real-world studies, a dataset always
contains noise in it, and this noise can affect
the performance of the classifier. Because
noise is a random variable, we can't model it
and that is why we have to somehow remove
it from the process. So, how do we find such
variables that are redundant in the process?
Well, we will discuss that in some time. First,
let's see why we need to do feature selection.

Why feature
selection?
Feature selection is the process of narrowing
down a subset of features, or attributes, to be
used in the predictive modeling process.
Feature selection is useful on a variety of
fronts. It is the best weapon against the curse
of dimensionality. It can reduce overall
training times, and it is a powerful defense
against overfitting, increasing model
generalization. Mainly, there are the
following reasons to go for the feature
selection process:

Simplification of models to make them
easier to interpret by researchers/users
Shorter training times
To avoid the curse of dimensionality
Enhanced generalization by
reducing overfitting or high variance

The central premise when using a feature
selection technique is that the data contains
many features that are either redundant or
irrelevant, and thus it can be removed without
incurring much loss of information.
Redundant and irrelevant features are two
distinct notions, since one relevant feature
may be redundant in the presence of another
relevant feature with which it is strongly
correlated.

Feature selection techniques
should be distinguished from
feature extraction.

Feature extraction creates new features from
functions of the original features, whereas
feature selection returns a subset of features.
Feature selection techniques are often used in
domains where there are many features and
comparatively few samples (or data points).
Archetypal cases for the application of
feature selection include analyses of written
texts and DNA microarray data, where there
are many thousands of features and a few tens

to hundreds of samples.

Let's discuss the reasons behind feature
selection in a bit more detail.

Simplification of
models
It's quite intuitive—as feature selection
reduces the size of dataset by selecting the
significant attributes only, it directly affects
the model complexity. Let's understand this
by an example.

I will use the iris classification dataset
available with the sklearn library. I will also
use sklearn decision tree algorithm to
demonstrate the impact of feature reduction
on tree architecture.

Dataset information
This is perhaps the best known database to be
found in pattern recognition literature.
Fisher's paper is a classic in this field and is
referenced frequently to this day. The dataset
contains three classes of 50 instances each,
where each class refers to a type of iris plant.
One class is linearly separable from the other
two; the latter are not linearly separable from
each other.

Predicted attribute
Class of an iris plant

This is an exceedingly simple domain. This
data differs from the data presented in
Fisher's article. The 35th sample should be
4.9,3.1,1.5,0.2, Iris Setosa, where the error is in
the fourth feature. The 38th sample is
4.9,3.6,1.4,0.1, Iris Setosa, where the errors are
in the second and third features.

Attribute
information
Following are the attributes in the dataset:

Sepal length in cm
Sepal width in cm
Petal length in cm
Petal width in cm
Class: Iris Setosa, Iris Versicolour, and
Iris Verginica

We will use the pydotplus library to create a
graph out of the trained tree; so if you want to
run the code on your system, you need to
download the library from Python packages
using pip.

First, we will create a tree using all of the
features in the dataset. The code goes like
this:

#Import Sklearn Datasets of IRIS flower

classification

import sklearn.datasets as datasets

#Import Pandas library to create data frame

from the data

import pandas as pd

#Load the dataset

iris=datasets.load_iris()

#Extract data part from the dataset

data = iris.data

#Select dimension of data

data = data[:,0:4]

#Load dataset into the data frame

df=pd.DataFrame(data)

#Extract target variable from the dataset

y=iris.target

#Import decision tree classifier from sklearn

from sklearn.tree import DecisionTreeClassifier

#We will create a tree with maximum depth of 5,

other parameters will be default

dtree=DecisionTreeClassifier(max_depth=5)

#Train the classifier

dtree.fit(df,y)

#Import graphwiz from sklearn to create the

graph out of tree

from sklearn.tree import export_graphviz

#We will use StringIO to create graph with all

characters

from sklearn.externals.six import StringIO

dot_data = StringIO()

#Import pydotplus to create tree as a graph and

store it on the disk

import pydotplus

#Create Graph out of tree and store it on the

disk

export_graphviz(dtree, out_file=dot_data,

 filled=True, rounded=True,

 special_characters=True)

graph =

pydotplus.graph_from_dot_data(dot_data.getvalue())

graph.write_png("graph_feat_4.png")

After execution, it should generate a graph
for the build tree, which will be stored as a
PNG image in your local directory. It should
look like this:

Figure 9.2: Tree with four features

The value row in each node tells us how many
of the observations that were sorted into that
node fall under each of our three categories.
We can see that our feature X2, which is the
petal length, was able to completely
distinguish one species of flower (Iris Setosa)
from the rest.

Now we will select the last two columns of
the feature by changing the line like this:

#Select dimension of data

data = data[:,2:4]

Now graph will be look like;

Figure 9.3: Tree with selected two features

Now, if you will look closely, at depth three,
the number of children in the second graph is

less than in the first graph. This is because
there was no split found in the case of less
features. One important point should be noted
here—this simplification does not happen due
to reduction in feature length; it happens
because we have selected the correct features
that contribute more to the final decision than
others.

Shorter training time
We have already trained decision trees in
previous chapters, where we saw that the
number of features is inversely proportional
to the training time. If we take the example of
decision trees, we know that to find the best
split, we must go through each attribute value
and test it for the candidate of the node. So, if
the number of attributes is less, the time to fit
a tree will also be less, as there are fewer
candidates available for node selection.

We will see the timing impact using the Otto
dataset, which we have used earlier in the
XGBoost library application. The dataset
contains 95 attributes and more than 61,000
instances; we will use 50000 instances to build
our model. We will fit a random forest
classifier. First we will build the model for all
95 attributes. Then we will train the model
with 40 features and see what kind of output
we get at the end:

#Import the supporting libraries

#Import pandas to load the dataset from csv

file

from pandas import read_csv

#Import numpy for array based operations and

calculations

import numpy as np

#Import Random Forest classifier class from

sklearn

from sklearn.ensemble import

RandomForestClassifier

#Load dataset as pandas data frame

data = read_csv('train.csv')

#Extract attribute names from the data frame

feat = data.keys()

feat_labels = feat.get_values()

#Extract data values from the data frame

dataset = data.values

#Shuffle the dataset

np.random.shuffle(dataset)

#We will select 50000 instances to train the

classifier

inst = 50000

#Extract 50000 instances from the dataset

dataset = dataset[0:inst,:]

#Split data into input and output variable with

selected features

Xtrain = dataset[:,1:40]

ytrain = dataset[:,94]

Create a random forest classifier with the

following Parameters

trees = 250

max_feat = 7

max_depth = 30

min_sample = 2

clf =

RandomForestClassifier(n_estimators=trees,

max_features=max_feat,

max_depth=max_depth,

 min_samples_split=

min_sample,

 random_state=0,

 n_jobs=-1)

Train the classifier and calculate the

training time

import time

start = time.time()

clf.fit(Xtrain, ytrain)

end = time.time()

print("Execution time for building the Tree is:

%f"%(float(end)-float(start)))

This is the time to execute the code; for all of
the features, we are getting the total training
time as:

Execution time for building the Tree is:

16.887000

And when we change the number of the
attribute to 40, we get the following timings:

Execution time for building the Tree is:

13.759000

So, as you can see, we are getting a
difference of approximately three seconds in
the training of the same classifier but with a
modified dataset.

To avoid the curse of
dimensionality
Suppose, you drop a coin on a 100-meter
line; how do you find it? Simple, just walk
along the line and search. But what if it's a
100x100 sq. m. field? It's already tough trying
to search a (roughly equivalent) football
ground for a single coin. Furthermore, what if
it's a 100x100x100 cu. m. space?! Your
football ground now has a 30-storeyed height.
Good luck finding a coin there! That, in
essence is the curse of dimensionality.

The curse of dimensionality, a term initially
introduced by Richard Bellman (an American
applied mathematician), is a phenomena that
arises when applying machine learning
algorithms to highly dimensional data.

What do we mean by dimensions of data?
Well, dimensions are nothing but the number

of attributes in a dataset. In the simplest form,
we can say that if we have many features in
our dataset (with redundancy), then it is a bit
difficult to get an optimum solution from the
classifier algorithm because the number of
features increases the complexity of the
model (as we have seen earlier):

Figure 9.4: Data in different dimensions

The preceding figure shows how the
complexity of a classifier depends on the
dimensions of the dataset. When there is a
one-dimensional dataset, a simple threshold
can be used as a classifier to segment the
instances into different groups. If we increase

the dimensions to two, the separation
between the classes needs to be classified
with the decision line. For a three-
dimensional dataset classifier, we will need to
fit a decision plan to separate the instances in
different classes. Thus, for an n-dimensional
dataset, our classifier's complexity will also
be of the nth order.

So when do the dimensions of data become
difficult to handle? Well, many ML methods
use distance measures.
Most segmentation and clustering methods
rely on computing distances between
observations. The well-known k-means
segmentation assigns points to
the nearest center. DBSCAN and hierarchical
clustering also required distance metrics.
Distribution and density-based outlier
detection algorithms also make use of
distance relative to other distances to mark
outliers.

Supervised classification solutions such as
KNN's method also use distances between

observations to assign a class to an unknown
observation. The Support Vector Machine
(SVM) method involves transforming
observations around select kernels based on
the distance between the observation and the
kernel.

Let's see how distance plays havoc in higher
dimensions.

Many algorithms measure distance between
two data points to define some sort of near-
ness (DBSCAN, kernels, and KNN) in
reference to some predefined distance
threshold. In two dimensions, we can imagine
that two points are near if one falls within a
certain radius of another. Consider the left-
hand-side image in the following figure.
What share of uniformly spaced points within
the black square fall inside the red circle?
That is about:

Figure 9.5: Data in different dimensions

So if you fit the biggest circle possible inside
a square, you cover 78.5% of the square. Yet,
the biggest sphere possible inside a cube
covers only:

of the cube's volume! This volume reduces
exponentially to 0.24% for just 10
dimensions! What this essentially means is
that in a high-dimensional world, every single
data point is at the corners and nothing really
is in the center of the volume. In other words,
the center volume reduces to nothing because
there is (almost) no center! This has huge

consequences on distance-based clustering
algorithms. All distances start looking the
same and any distance more or less than any
other is more of a random fluctuation in data
rather than a measure of dissimilarity!

Apart from distances and volumes, the
number of dimensions creates other practical
problems too. Solution runtime and system
memory requirements often
escalate nonlinearly with an increase in the
number of dimensions. Due to exponential
increases in feasible solutions, many
optimization methods cannot reach the global
optima and have to make do with a local
optima. Further, instead of a closed-form
solution, the optimization must use search-
based algorithms such as gradient descent,
genetic algorithm, and simulated annealing.
More dimensions introduce the possibility of
correlation, and parameter estimation can
become difficult in regression approaches.

So, the bottom line is that selecting useful
features can reduce the number of variables

in the dataset, which eventually reduces the
complexity (dimensions) of the dataset. Also,
it becomes quite easy to fit a model on the
modified dataset.

Enhanced
generalization by
reducing overfitting
Keeping irrelevant attributes in your dataset
can result in overfitting. Decision tree
algorithms such as C4.5 seek to make optimal
splits in attribute values. Those attributes that
are more correlated with the prediction are
split on first. Deeper in the tree, less relevant
and irrelevant attributes are used to make
prediction decisions that may only be
beneficial by chance in the training dataset.
This overfitting of the training data can
negatively affect the modeling power of the
method and cripple the predictive accuracy.

We will see the code example for this point in
the next section, where we will use feature
selection by the random forest algorithm.

Feature selection for
machine learning
In this section, we will see different methods
to select features from the dataset; we will
discuss the following types of feature
selection algorithms and their implementation
in Python using the Scikit-learn (sklearn)
library:

Univariate selection
Recursive Feature Elimination (RFE)
Principle Component Analysis (PCA)
Choosing important features (feature
importance)

We will discuss the first three algorithms and
their implementation in short. We will
discuss the Choosing important features
(feature importance) part in more detail
because it is a widely used technique in the
data science community.

 Univariate selection
Statistical tests can be used to select those
features that have the strongest relationships
with the output variable.

The scikit-learn library provides
the SelectKBest class, which can be used with a
suite of different statistical tests to select a
specific number of features.

The following example uses the chi squared
(chi^2) statistical test for non-negative
features to select four of the best features
from the Pima Indians onset of diabetes
dataset:

#Feature Extraction with Univariate Statistical

Tests (Chi-squared for classification)

#Import the required packages

#Import pandas to read csv

import pandas

#Import numpy for array related operations

import numpy

#Import sklearn's feature selection algorithm

from sklearn.feature_selection import

SelectKBest

#Import chi2 for performing chi square test

from sklearn.feature_selection import chi2

#URL for loading the dataset

url = "https://archive.ics.uci.edu/ml/machine-

learning-databases/pima-indians

diabetes/pima-indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin',

'test', 'mass', 'pedi', 'age', 'class']

#Create pandas data frame by loading the data

from URL

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#We will select the features using chi square

test = SelectKBest(score_func=chi2, k=4)

#Fit the function for ranking the features by

score

fit = test.fit(X, Y)

#Summarize scores

numpy.set_printoptions(precision=3)

print(fit.scores_)

#Apply the transformation on to dataset

features = fit.transform(X)

#Summarize selected features

print(features[0:5,:])

You can see the scores for each attribute and
the four attributes chosen (those with the
highest scores): plas, test, mass, and age.

Scores for each feature:

[111.52 1411.887 17.605 53.108

2175.565 127.669 5.393 181.304]

Selected features:

[[148. 0. 33.6 50.]

 [85. 0. 26.6 31.]

 [183. 0. 23.3 32.]

 [89. 94. 28.1 21.]

 [137. 168. 43.1 33.]]

Recursive Feature
Elimination
RFE works by recursively removing
attributes and building a model on attributes
that remain.

It uses model accuracy to identify which
attributes (and combinations of attributes)
contribute the most to predicting the target
attribute.

You can learn more about the RFE class in
the scikit-learn documentation.

The following example uses RFE with the
logistic regression algorithm to select the top
three features. The choice of algorithm does
not matter too much as long as it is skillful
and consistent:

#Import the required packages

#Import pandas to read csv

import pandas

#Import numpy for array related operations

import numpy

#Import sklearn's feature selection algorithm

from sklearn.feature_selection import RFE

#Import LogisticRegression for performing chi

square test

from sklearn.linear_model import

LogisticRegression

#URL for loading the dataset

url = "https://archive.ics.uci.edu/ml/machine-

learning-databases/pima-indians-diabetes/pima-

indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin',

'test', 'mass', 'pedi', 'age', 'class']

#Create pandas data frame by loading the data

from URL

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#Feature extraction

model = LogisticRegression()

rfe = RFE(model, 3)

fit = rfe.fit(X, Y)

print("Num Features: %d"% fit.n_features_)

print("Selected Features: %s"% fit.support_)

print("Feature Ranking: %s"% fit.ranking_)

After execution, we will get:

Num Features: 3

Selected Features: [True False False False

False True True False]

Feature Ranking: [1 2 3 5 6 1 1 4]

You can see that RFE chose the top three
features as preg, mass, and pedi.

These are marked True in the support_ array and
marked with a choice 1 in the ranking_ array.

Principle Component
Analysis
PCA uses linear algebra to transform the
dataset into a compressed form.

Generally, it is considered a data reduction
technique. A property of PCA is that you can
choose the number of dimensions or principal
components in the transformed result.

In the following example, we use PCA and
select three principal components:

#Import the required packages

#Import pandas to read csv

import pandas

#Import numpy for array related operations

import numpy

#Import sklearn's PCA algorithm

from sklearn.decomposition import PCA

#URL for loading the dataset

url = "https://archive.ics.uci.edu/ml/machine-

learning-databases/pima-indians

diabetes/pima-indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin',

'test', 'mass', 'pedi', 'age', 'class']

#Create pandas data frame by loading the data

from URL

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#Feature extraction

pca = PCA(n_components=3)

fit = pca.fit(X)

#Summarize components

print("Explained Variance: %s") %

fit.explained_variance_ratio_

print(fit.components_)

You can see that the transformed dataset
(three principal components) bears little
resemblance to the source data:

Explained Variance: [0.88854663 0.06159078

0.02579012]

[[-2.02176587e-03 9.78115765e-02

1.60930503e-02 6.07566861e-02

 9.93110844e-01 1.40108085e-02 5.37167919e-

04 -3.56474430e-03]

 [-2.26488861e-02 -9.72210040e-01

-1.41909330e-01 5.78614699e-02

 9.46266913e-02 -4.69729766e-02 -8.16804621e-

04 -1.40168181e-01

 [-2.24649003e-02 1.43428710e-01

-9.22467192e-01 -3.07013055e-01

 2.09773019e-02 -1.32444542e-01 -6.39983017e-

04 -1.25454310e-01]]

Choosing important
features (feature
importance)
Feature importance is the technique used to
select features using a trained supervised
classifier. When we train a classifier such as a
decision tree, we evaluate each attribute to
create splits; we can use this measure as a
feature selector. Let's understand it in detail.

Random forests are among the most popular
machine learning methods thanks to their
relatively good accuracy, robustness, and
ease of use. They also provide two
straightforward methods for feature selection
—mean decrease impurity and mean
decrease accuracy.

A random forest consists of a number of
decision trees. Every node in a decision tree

is a condition on a single feature, designed to
split the dataset into two so that similar
response values end up in the same set. The
measure based on which the (locally) optimal
condition is chosen is known as impurity.
For classification, it is typically either the
Gini impurity or information gain/entropy,
and for regression trees, it is the variance.
Thus when training a tree, it can be computed
by how much each feature decreases the
weighted impurity in a tree. For a forest, the
impurity decrease from each feature can be
averaged and the features are ranked
according to this measure.

Let's see how to do feature selection using a
random forest classifier and evaluate the
accuracy of the classifier before and after
feature selection.

We will use the Otto dataset, which we have
used earlier in Chapter 7, XGBoost – eXtreme
Gradient Boosting, where we discussed the
XGBoost library.

This dataset is available for free from kaggle
(you will need to sign up to kaggle to be able
to download this dataset). You can
download training dataset, train.csv.zip, from
the https://www.kaggle.com/c/otto-group-product-classifica
tion-challenge/data and place the
unzipped train.csv file in your working
directory.

This dataset describes 93 obfuscated details
of more than 61,000 products grouped into 10
product categories (for example, fashion,
electronics, and so on). Input attributes are
the counts of different events of some kind.

The goal is to make predictions for new
products as an array of probabilities for each
of the 10 categories, and models are
evaluated using multiclass logarithmic loss
(also called cross entropy).

We will start with importing all of the
libraries:

#Import the supporting libraries

#Import pandas to load the dataset from csv

file

https://www.kaggle.com/c/otto-group-product-classification-challenge/data

from pandas import read_csv

#Import numpy for array based operations and

calculations

import numpy as np

#Import Random Forest classifier class from

sklearn

from sklearn.ensemble import

RandomForestClassifier

#Import feature selector class select model of

sklearn

from sklearn.feature_selection import

SelectFromModel

np.random.seed(1)

Let's define a method to split our dataset into
training and testing data; we will train our
dataset on the training part and the testing part
will be used for evaluation of the trained
model:

#Function to create Train and Test set from

the original dataset

def getTrainTestData(dataset,split):

 np.random.seed(0)

 training = []

 testing = []

 np.random.shuffle(dataset)

 shape = np.shape(dataset)

 trainlength =

np.uint16(np.floor(split*shape[0]))

 for i in range(trainlength):

 training.append(dataset[i])

 for i in range(trainlength,shape[0]):

 testing.append(dataset[i])

 training = np.array(training)

 testing = np.array(testing)

 return training,testing

We also need to add a function to evaluate
the accuracy of the model; it will take the
predicted and actual output as input to
calculate the percentage accuracy:

#Function to evaluate model performance

def getAccuracy(pre,ytest):

 count = 0

 for i in range(len(ytest)):

 if ytest[i]==pre[i]:

 count+=1

 acc = float(count)/len(ytest)

 return acc

This is the time to load the dataset. We will
load the train.csv file; this file contains more
than 61,000 training instances. We will use
50000 instances for our example, in which we
will use 35,000 instances to train the
classifier and 15,000 instances to test the
performance of the classifier:

#Load dataset as pandas data frame

data = read_csv('train.csv')

#Extract attribute names from the data frame

feat = data.keys()

feat_labels = feat.get_values()

#Extract data values from the data frame

dataset = data.values

#Shuffle the dataset

np.random.shuffle(dataset)

#We will select 50000 instances to train the

classifier

inst = 50000

#Extract 50000 instances from the dataset

dataset = dataset[0:inst,:]

#Create Training and Testing data for

performance evaluation

train,test = getTrainTestData(dataset, 0.7)

#Split data into input and output variable with

selected features

Xtrain = train[:,0:94]

ytrain = train[:,94]

shape = np.shape(Xtrain)

print("Shape of the dataset ",shape)

#Print the size of Data in MBs

print("Size of Data set before feature

selection: %.2f MB"%(Xtrain.nbytes/1e6))

Let's take note of the data size here; as our
dataset contains about 35000 training instances
with 94 attributes; the size of our dataset is
quite large. Let's see:

Shape of the dataset (35000, 94)

Size of Data set before feature selection:

26.32 MB

As you can see, we are having 35000 rows and
94 columns in our dataset, which is more than
26 MB data.

In the next code block, we will configure our
random forest classifier; we will use 250 trees
with a maximum depth of 30 and the number
of random features will be 7. Other
hyperparameters will be the default of sklearn:

#Lets select the test data for model evaluation

purpose

Xtest = test[:,0:94]

ytest = test[:,94]

#Create a random forest classifier with the

following Parameters

trees = 250

max_feat = 7

max_depth = 30

min_sample = 2

clf =

RandomForestClassifier(n_estimators=trees,

max_features=max_feat,

max_depth=max_depth,

 min_samples_split=

min_sample,

 random_state=0,

 n_jobs=-1)

#Train the classifier and calculate the

training time

import time

start = time.time()

clf.fit(Xtrain, ytrain)

end = time.time()

#Lets Note down the model training time

print("Execution time for building the Tree is:

%f"%(float(end)-float(start)))

pre = clf.predict(Xtest)

Let's see how much time is required to train
the model on the training dataset:

Execution time for building the Tree is:

2.913641

#Evaluate the model performance for the test

data

acc = getAccuracy(pre, ytest)

print("Accuracy of model before feature

selection is %.2f"%(100*acc))

The accuracy of our model is:

Accuracy of model before feature selection is

98.82

As you can see, we are getting very good
accuracy as we are classifying almost 99% of
the test data into the correct categories. This
means we are classifying about 14,823
instances out of 15,000 in correct classes.

So, now my question is: should we go for
further improvement? Well, why not? We

should definitely go for more improvements
if we can; here, we will use feature
importance to select features. As you know,
in the tree building process, we use impurity
measurement for node selection. The attribute
value that has the lowest impurity is chosen
as the node in the tree. We can use similar
criteria for feature selection. We can give
more importance to features that have less
impurity, and this can be done using the
feature_importances_ function of the sklearn
library. Let's find out the importance of each
feature:

#Once we have trained the model we will rank

all the features

for feature in zip(feat_labels,

clf.feature_importances_):

 print(feature)

('id', 0.33346650420175183)

('feat_1', 0.0036186958628801214)

('feat_2', 0.0037243050888530957)

('feat_3', 0.011579217472062748)

('feat_4', 0.010297382675187445)

('feat_5', 0.0010359139416194116)

('feat_6', 0.00038171336038056165)

('feat_7', 0.0024867672489765021)

('feat_8', 0.0096689721610546085)

('feat_9', 0.007906150362995093)

('feat_10', 0.0022342480802130366)

As you can see here, each feature has a
different importance based on its contribution
to the final prediction.

We will use these importance scores to rank
our features; in the following part, we will
select those features that have feature
importance more than 0.01 for model training:

#Select features which have higher contribution

in the final prediction

sfm = SelectFromModel(clf, threshold=0.01)

sfm.fit(Xtrain,ytrain)

Here, we will transform the input dataset
according to the selected feature attributes. In
the next code block, we will transform the
dataset. Then, we will check the size and shape
of the new dataset:

#Transform input dataset

Xtrain_1 = sfm.transform(Xtrain)

Xtest_1 = sfm.transform(Xtest)

#Let's see the size and shape of new dataset

print("Size of Data set before feature

selection: %.2f MB"%(Xtrain_1.nbytes/1e6))

shape = np.shape(Xtrain_1)

print("Shape of the dataset ",shape)

Size of Data set before feature selection: 5.60

MB

Shape of the dataset (35000, 20)

Do you see the shape of the dataset? We are
left with only 20 features after the feature
selection process, which reduces the size of
the database from 26 MB to 5.60 MB. That's
about 80% reduction from the original
dataset.

In the next code block, we will train a new
random forest classifier with the same
hyperparameters as earlier and test it on the
testing dataset. Let's see what accuracy we get
after modifying the training set:

#Model training time

start = time.time()

clf.fit(Xtrain_1, ytrain)

end = time.time()

print("Execution time for building the Tree is:

%f"%(float(end)-float(start)))

#Let's evaluate the model on test data

pre = clf.predict(Xtest_1)

count = 0

acc2 = getAccuracy(pre, ytest)

print("Accuracy after feature selection %.2f"%

(100*acc2))

Execution time for building the Tree is:

1.711518

Accuracy after feature selection 99.97

Can you see that!! We have got 99.97 percent
accuracy with the modified dataset, which
means we are classifying 14,996 instances in
correct classes, while previously we were
classifying only 14,823 instances correctly.

This is a huge improvement we have got with
the feature selection process; we can
summarize all the results in the following
table:

Evaluation
criteria

Before
feature

selection

After
feature

selection

Number of
features

94 20

Size of
dataset 26.32 MB 5.60 MB

Training

time 2.91 seconds 1.71 seconds

Accuracy 98.82 percent 99.97 percent

Table 9.1: A comparison of classifier performance on feature
selection versus raw data

The preceding table shows the practical
advantages of feature selection. You can see
that we have reduced the number of features
significantly, which reduces the model
complexity and dimensions of the dataset.
We are getting less training time after the
reduction in dimensions, and at the end, we
have overcome the overfitting issue, getting
higher accuracy than before.

So, I think we have talked a lot about feature
selection, and now it's time to come back to
stacking. We are going to create a stack of
nonlinear algorithms this time.

We will use an SVM as one of the classifiers
in the ensemble stack; So let's start by

understanding SVMs.

Understanding the
SVM
SVM are perhaps one of the most popular and
talked about machine learning algorithms. An
SVM is a supervised machine learning
algorithm that can be used for both
classification and regression tasks.
However, it is mostly used in classification
problems. They were extremely popular
around the time they were developed in the
1990s and continue to be the go-to method
for a high-performing algorithm with little
tuning.

SVMs are also known as
maximal margin classifier, soft
margin classifier, linear SVM,
and kernel-based SVM.

All of these are different ways to use the
classifiers; we will cover a basic

understanding of these flavors.

In this algorithm, we plot each data item as a
point in n-dimensional space (where n is
number of features we have), with the value
of each feature being the value of a particular
coordinate. Then, we perform classification
by finding a hyperplane that differentiates the
two classes very well; the following figure
shows the working of an SVM:

Figure 9.6: Support Vector Machine

Support Vectors are simply the coordinates
of individual observation. The SVM is a
frontier that best segregates the two classes

(hyperplane/line).

Now, the question is, how does it actually
work? So, in the following section, we will
start working on the development and
implementation of the SVM.

How does SVM
work?
Support vectors are simply the coordinates of
individual observation. Let's understand this
with the help of an example.

We have a population composed of 50%
males and 50% females. Using a sample of
this population, we want to create a set of
rules that will guide us in the gender class for
the rest of the population. Using this
algorithm, we intend to build a robot that can
identify whether a person is a male or a
female. This is a sample problem of
classification analysis. Using some set of
rules, we will try to classify the population
into two possible segments. For simplicity,
let's assume that the two differentiating
factors identified are the height of the
individual and hair length. The following is a
scatter plot of the sample:

Figure 9.7: Data representation of males and females

The blue circles in the plot represent females
and green squares represent males. A few
expected insights from the graph are that:

Males in our population have a higher
average height
Females in our population have longer
scalp hairs

If we were to see an individual with height
180 cm and hair length 4 cm, our best guess
would be to classify this individual as a male.
This is how we do a classification analysis.

Now, as I have mentioned earlier, SVMs are
the coordinates of individual observations;
for instance, (45, 150) is a support vector that
corresponds to a female. SVM is a frontier
that best segregates the males from the
females. In this case, the two classes are well
separated from each other; hence, it is easier
to find an SVM.

Now the question is: how to find the
frontiers? For the current example, the
following figure shows three possible
frontiers:

Figure 9.8: Different frontiers to separate data

So, what do you think? How do we decide
which is the best frontier for this particular
problem statement?

The easiest way to interpret the objective
function in an SVM is to find the minimum
distance of the frontier from the closest
support vector (this can belong to any class).
For instance, the orange frontier is closest to
the blue circles and the closest blue circle is 2
units away from the frontier. Once we have
these distances for all frontiers, we simply
choose the frontier with the maximum
distance (from the closest support vector).
Out of the three frontiers shown, we see that
the black frontier is farthest from the nearest
support vector (that is, 15 units).

These frontiers are known as hyperplanes.
What is a hyperplane?

 Hyperplane –
separation between
the data points
Geometry tells us that a hyperplane is a
subspace of one dimension less than its
ambient space. For instance, a hyperplane of
an n-dimensional space is a flat subset with
dimension n−1. By its nature, it separates the
space into two half spaces. For machine
learning tasks, we can reimagine hyperplanes
as follows:

A linear decision surface that splits a
space into two parts
A binary classifier

The following figure shows hyperplanes:

Figure 9.9: Hyperplane in linear separable data

This hyperplane will work very well for
linear classification problems of N classes
with M features; we can learn a mapping that
is a linear combination. (such as y = mx + b)
or even a multidimensional hyperplane (y = x
+ z + b + q). No matter how many
dimensions/features a set of classes has, we
can represent the mapping using a linear
function.

But what if we get a nonlinear classification
problem where the data is not linearly
separable, such as a quadratic mapping?

Luckily for us, SVMs can efficiently perform
a nonlinear classification using what is called
the kernel trick. We will not talk about the
kernel trick right now.

Figure 9.10: Hyperplane in nonlinear data

Implementation of an
SVM
Let's start with an implementation of an
SVM; we will formulate the concepts behind
the SVM during the development process so
that it will give you a clear understanding of
the implementation.

Suppose we have some points on a graph;
each point belongs to either a positive class or
a negative class:

SN X Y Class

1 -2 4 -1

2 4 1 -1

3 1 6 1

4 2 4 1

5 6 2 1

Table 9.2: Our toy dataset

Let's plot these points on a graph using
Python:

#Import numpy to help us perform math

operations

import numpy as np

#Import matplotlib to plot our data and model

visually

from matplotlib import pyplot as plt

#Input data - Of the form [X value, Y value,

Bias term]

X = np.array([

 [-2,4, -1],

 [4,1, -1],

 [1, 6, -1],

 [2, 4, -1],

 [6, 2, -1],

])

If you guys look closely, you'll see that we
have added a bias value column to the
original dataset; although it is not necessary

to add the bias to the dataset, it is a good
practice to do so:

#Associated output labels - First 2 examples

are labelled '-1' and last 3 are labelled '+1'

y = np.array([-1,-1,1,1,1])

#lets plot these examples on a 2D graph!

#for each example

for d, sample in enumerate(X):

Plot the negative samples (the first 2)

 if d <2:

 plt.scatter(sample[0], sample[1],

s=120, marker='_', linewidths=2)

 # Plot the positive samples (the last 3)

 else:

 plt.scatter(sample[0], sample[1],

s=120, marker='+', linewidths=2)

After execution of the preceding code, we
will get:

Figure 9.11 Positive and negative class

So you see, we have a linearly separable
dataset. Let's put a line to separate these two
classes by adding the following line to the
code:

#Print a possible hyperplane,that is separating

the two classes.#we'll two points and draw the

line between them (naive guess)

plt.plot([-2,6],[6,0.5])

plt.show()

This will add a hyperplane to the preceding
figure:

Figure 9.12: Hyperplane for separating two classes

Although we have created this line ourselves,

this is what we actually want from the
algorithm at the end; now, we will see how to
predict such a hyperplane by our algorithm.
But before doing that, it is necessary to
understand the underlying concepts of SVM.

What do you think? How can we get such a
hyperplane? One way to do this is to select
coordinates randomly to plot a line and then
check the distance of the line with all of the
points. If the distance is not optimal, we drop
the coordinate and select a new pair again
randomly until we get the best separation
between the points and the line. This
procedure of drawing a line and checking the
separation is known as Random Sample
Consensus (RANSAC), but is a very time-
consuming procedure and you never know
when you will get the convergence. Do you
know anything else?

Well, you know we can formulate this
problem; we want to create a line between
two classes. This line should classify input
points into one of the classes by checking on

which side of the line the input point is lying.

Objective function
Let's consider our support vector as W, for
example:

 (
1)

Where X is the input vector, y is the predicted
output, and b is the bias. As we are working
with the binary class problem, we want our
output to be either +1 or -1. We write it as:

(2)

The preceding equation tells us two things.
To check the correctness (or loss) from our
function, we have to choose a loss function so
that it can indicate loss in a binary form; that
is, if we are getting the correct output, we

should get +1 at the output, and if we are
incorrect, we must get -1. To make such a
function, we need to modify the preceding
function so that it can produce a binary
output.

We can do this by adding a special kind of
loss function to our classifier; this function is
known as hinge loss. This loss can be written
as:

 (3)

Where c is the loss function, x is the input
vector, y is the output vector (actual
prediction), f(x) is the predictor function
(W*X+b), and + denotes that this function
will always have a positive value at the
output. The preceding function has a special
characteristic; if y and f(x) are the same, then
our loss will always be 0. If y and f(x) are
different, then we will end up with a value
less than 1:

 (4)

Now we can treat this problem as an
optimization problem as we want to reduce
the loss between the predicted and actual
output of the classifier; so we can define our
objective function for optimization as:

 (5)

Doesn't this function look similar to the cost
function we have used earlier in the book? If
it is a similar kind of function, then what is
the change that makes SVM a different
classifier? Well, there is a big change in the
formula of the objective function itself, and
that is the regularization variable. This is the
heart of the SVM algorithm; the regularizer
balances between margin maximization and
loss. We want to find the decision surface

that is maximally far away from any data
points. We will rewrite our objective function
with the regularizer term as:

 (6)

As you can see, our objective in an SVM
consists of two terms. The first term is a
regularizer, the heart of the SVM; the second
term is the loss.

If you have noticed, we have not included the
bias term in our objective function. The
reason? If you remember, we
have already included the bias in our toy
dataset. We will use a hardcoded bias to
avoid complexity in our model. So, when we
need to choose the number of weights, we
will count the bias column as a feature and
assign the weight for that.

Now, it's time for model learning and we will
use the same algorithm for optimization of

our objective function as we have used to
train GBM and perceptron. Yes, you guessed
the name: gradient descent algorithm.

Function
optimization
As we have discussed gradient descent a lot
in the previous chapter, we will not
emphasize much on it, but we will see how to
change weights using it; as this time, the
objective function is different, we have to
derive the formula for the weight update rule.

Before going ahead, here is a small recap of
the gradient descent algorithm. Gradient
descent is the most popular optimization
algorithm in the machine learning world; it
works on the principle of motion. We assume
our objective function as convex in nature
and try to travel into the valley by updating
the function parameter so that it follows the
gradient of the function, which eventually
helps us find the minimum of our objective
function.

As we have discussed, we have to derive the
weight update rule for our objective function.
As you can see, the function consists of two
terms; the first is the regularizer and the
second is the loss itself. We will derive them
separately using the sum rule in
differentiation.

First, we will find the partial derivative of the
regularizer term with respect to w, and then
we will find the partial derivative of the loss
function with respect to w, which will give us
the following formulas:

 (7)

As you can see, the derivatives are quite
straight and simple. The preceding terms
indicate that if we have a misclassified
sample, we update the weight vector w using
the gradients of both terms. Otherwise, if it is

classified correctly, we just update w by the
gradient of the regularizer.

And as we know from the equation (4), the
condition for misclassification is:

 (8)

So we update the rule for our weights (w) by
gradient descent whenever we misclassify an
input; the weight will update as:

 (9)

As you can see in equation (9), we will
change the weights according to the gradients
we have got in equation (7). Here we also
have included the learning rate η, which helps
us to control the rate of convergence. We can
see that the regularization parameter λ will
help us control the rate of change in the
weights. We can conclude the following
points from the preceding equation:

If we make the learning rate too high,
the algorithm might overshoot the
optimal point
If we make the learning rate too low, it
could take too long to converge or never
converge

We have discussed both of the points in detail
in Chapter 8, Stacked Generalization, so you
can take the reference from there.

Now, we will talk a bit about the regularizer;
the regularizer controls the trade-off between
achieving a low training error and a low
testing error, that is, the ability to generalize
your classifier to unseen data. As a
regularizing parameter, we will choose a
value equal to 1/epochs, so this parameter
will decrease as the number of epochs
increases:

If we make the regularizer too high, we
can face the problem of overfitting of
the classifier (large testing error)
If we make the regularizer too low, we

can face underfitting of the classifier
(large training error)

Now, for a correctly classified instance, we
will not change the weights in the following
manner:

 (10)

In this equation, as you can see, we have not
included input and output values for the
instance.

So, now we are all ready to implement the
preceding build concepts in code form; let's
see whether we can create a hyperplane for
our toy example:

#lets perform stochastic gradient descent to

learn the separating hyper plane between both

classes

def svm_learning(X, Y):

 #Initialize our SVMs weight vector with

zeros (3 values including bias as

feature)

 w = np.zeros(len(X[0]))

 #The learning rate

 eta = 0.9

 #how many iterations to train for

 epochs = 1000

 #store miss-classifications so we can plot

how they change over time

 errors = []

 #training part, gradient descent part

 for epoch in range(1,epochs):

 #Initialize the error variable

 error = 0

 for i, x in enumerate(X):

 #Check for miss-classification

(Equation no. 8)

 if (Y[i]*np.dot(X[i], w)) < 1:

 #Update the weights for miss

classified input

 #Here we are using lambda =

1/epochs (Equation no. 9)

 w = w + eta * ((X[i] * Y[i]) +

(-2 *(1/epoch)* w))

 error = 1

 else:

 #correct classification, update

our weights

 #Equation (10)

 w = w + eta * (-2 *(1/epoch)*

w)

 errors.append(error)

 #lets plot the rate of classification

errors during training for our SVM

 plt.plot(errors, '|')

 plt.ylim(0.5,1.5)

 plt.axes().set_yticklabels([])

 plt.xlabel('Epoch')

 plt.ylabel('Misclassified')

 plt.show()

 #Return the updated weights

 return w

The preceding function will train the SVM
using stochastic gradient descent algorithm;
we have just implemented equation (8), and
equation (10) to perform the optimization.
This figure shows how the error reduces
during each epoch:

Figure 9.13: Reduction in error in each epoch

Now, let's call this function for our toy
example:

#Here we will train our classifier

w = svm_learning(X,y)

#Lets plot the points again

for d, sample in enumerate(X):

 # Plot the negative samples

 if d < 2:

 plt.scatter(sample[0], sample[1],

s=120, marker='_', linewidths=2)

 # Plot the positive samples

 else:

 plt.scatter(sample[0], sample[1],

s=120, marker='+', linewidths=2)

We will add two test points to our graph and
see whether our learned boundary is able to
separate them into the correct class or not:

#Let's Add our test samples

plt.scatter(2,2, s=120, marker='_',

linewidths=2, color='yellow')

plt.scatter(4,3, s=120, marker='+',

linewidths=2, color='blue')

#Here we will print the hyperplane calculated

by svm_train()

x2=[w[0],w[1],-w[1],w[0]]

x3=[w[0],w[1],w[1],-w[0]]

#Following lines will create a plot with our

hyperplane and data

x2x3 =np.array([x2,x3])

X,Y,U,V = zip(*x2x3)

ax = plt.gca()

ax.quiver(X,Y,U,V,scale=1, color='blue')

plt.show()

The following graphs show the decreasing
error rate and the hyperplane we get after
training our classifier:

Figure 9.14: Optimized hyperplane showing accurate
classification of test points

Wow! Can you see that! We have
successfully implemented the SVM
algorithm. As you can see, we are able to
classify the new input points quite accurately
from the preceding algorithm.

Handling a nonlinear
dataset
Suppose you need to train a classifier for the
data shown in the following figure. What will
be your approach to classify the data into two
classes?

Figure 9.15: Nonlinear dataset

As you can see in the preceding figure, we
can't find a decision boundary using a straight
line or even a plane because this data is a
linearly nonseparable dataset. So, what do we
do with this kind of problem?

Well, mathematics has solutions for almost
every kind of problem, so for this too. What
we need to do is change our perception
toward the data. I know you have not got
anything I said! Let's understand the
preceding problem with an example. Suppose
you have some ping pong balls in a bucket.
The balls are of two colors: yellow and
purple. Someone asks you to find the number
of yellow balls in the bucket. Don't think that
it is an easy problem, as there may be some
balls you cannot see. So, what will you do to
find the number? Well, the answer is not that
difficult. Just empty the bucket on the surface
and you will not have the problem of
invisible balls anymore. And now you can
count them! Trust me, this is the only

solution that gives you very fast results.

So what is the connection between this
bucket and the nonlinear data problem? To
solve both the problems, you need to change
the space. In case of balls, to see the hidden
balls, we empty the bucket on the surface
(space) where we can see all of the balls at
once. Similarly, we need to change the
subspace of our data to see the chances of
separation using a linear classifier.

This change in the subspace is known as
the transformation of data, and the function
that helps us to do such a transformation is
known as the kernel. So, what do you think?
Can this strategy of changing spaces and
visualizing our data in a new space help us?
Let's see.

We will apply a polynomial function to
convert our 2D subspace into a 3D subspace;
let's write a code and see whether it can help
us.

First, we will generate the data for our
example:

#We will use sklearns make circle to create the

data

from sklearn.datasets import make_circles

#Numpy will help us for array related

operations

import numpy as np

#We will use pylab for visualization of plots

import pylab as pl

#Generate the dataset using make_circle

function

X1, Y1 = make_circles(n_samples=800,

noise=0.07, factor=0.4)

#Let's Plot the Point and see

print ("...Showing dataset in new window...")

pl.figure(figsize=(10, 8))

pl.subplot(111)

pl.scatter(X1[:, 0], X1[:, 1], marker='o',

c=Y1)

pl.show()

The preceding function will generate the
nonlinear data with which we have started the
problem. Now, we will write a polynomial
kernel that will take the x and y coordinates
and will transform the points in a different
space:

#Kernel to convert sub space of data

def fn_kernel(x1, x2):

 # Implements a kernel phi(x1,y1) = [x1,

y1, x1^2 + y1^2]

 return np.array([x1, x2, x1**2.0 +

x2**2.0])

If you look carefully, you will understand
how the kernel is converting the points from
2D space to 3D space; let's execute it using
the following code block:

#Create a list to store transformed points

transformed = []

#Transform each point to the new sub space

for points in X:

 transformed.append(fn_kernel(points[0],

points[1]))

transformed = np.array(transformed)

#We will 3D plots to visualize data in higher

dimension

from mpl_toolkits.mplot3d import Axes3D

#Import matplotlib to plot the data

import matplotlib.pyplot as plt

#Let's plot the original data first

fig = plt.figure(figsize=(20,8))

ax = fig.add_subplot(121)

ax.scatter(X[:, 0], X[:, 1], marker='o', c=Y)

ax.set_xlabel('X Label')

ax.set_ylabel('Y Label')

ax.set_title("Data in 2D (Non-separable)")

#Here we will plot the transformed data

ax = fig.add_subplot(122, projection='3d')

ax.scatter(transformed[:, 0], transformed[:,

1],transformed[:, 2], marker='o',

c=Y)

ax.set_xlabel('X Label')

ax.set_ylabel('Y Label')

ax.set_zlabel('Z Label')

ax.set_title("Data in 3D (separable)")

#Finally show all the plots

plt.show()

Figure 9.16: Kernel trick for nonlinear dataset

Can you see that? Our transformed dataset
can be separated by a hyperplane. The kernel
trick is generally used to tackle non-separable
datasets. There are many kinds of kernels
available according to different requirements,
such as the radial basis kernel (Gaussian
kernel), polynomial kernel, sigmoid kernel,

and so on.

Let's see how to use a kernel in the SVM:

#Import our SVM classifier from sklearn

from sklearn.svm import SVC

#Let's merge input and output variable to

create train and test data

dataset = np.c_[X,Y]

#We will use our train and test split function

train,test = getTrainTestData(dataset, 0.7)

#Extract training input and output

x_train = train[:,0:2]

y_train = train[:,2]

#Extract testing input and output

x_test = test[:,0:2]

y_test = test[:,2]

We will train our classifier with a linear
kernel first; it will show you how the kernel
choice is very critical for the classifier's
performance. We will see the prediction
accuracy of our classifier on the testing
dataset:

#First we will train our classifier with linear

kernel

clf = SVC(kernel='linear')

clf.fit(x_train,y_train)

#Predict the output on test set

pred = clf.predict(x_test)

acc = getAccuracy(pred, y_test)

print("Accuracy of the classifier with linear

kernel is %.2f"%(100*acc))

Accuracy of the classifier with linear kernel

is 45.83

As you can see, this is what we were
expecting from our classifier. As our data is
not linearly separable, linear classification
will not work for us; we are getting an
accuracy as bad as a random classification.
Now we will train our new classifier with the
Radial Basis Function (RBF):

#Now we will train our classifier with RBF

kernel

clf = SVC(kernel='rbf',C=3.0)

clf.fit(x_train,y_train)

#Predict the output on test set

pred = clf.predict(x_test)

acc = getAccuracy(pred, y_test)

print("Accuracy of the classifier with rbf

kernel is %.2f"%(100*acc))

Accuracy of the classifier with rbf kernel is

100.00

Can you see the change of choosing a kernel?
We are getting correct classifications for all
of our test instances; this is why RBF kernels
are the best choice for nonlinear data.

So, I think we have discussed enough on
SVMs, and we are ready to use them in our
stacked generalization. Remember, we will
always use an SVM with some kernel.
Now, which kernel can perform best depends
on the dataset. To find out the optimal
hyperparameters for the classifier, sklearn uses
a class for grid search; this class tests the
classifier performance for a set of different
parameter values. So, it is a good practice to
apply grid search and cross validation to
decide on a classifier.

Stacking of nonlinear
algorithms
So, it's time to return to the current topic—
stacked generalization. We have seen stacked
generalization in the previous chapter and
implemented it successfully. This time, we
will go for a more advanced version of
stacked generalization; we will stack all of
the classifier variations we have worked on in
this book, such as decision trees, random
forest, AdaBoost classifier, SVMs, KNN, and
logistic regression. We will combine their
result by voting.

So, what is the difference from the previous
approach of stacking? Well, this time, we will
use bagging to stack the classifier; this is the
procedure we will follow:

1. Create a stack of multiple classifiers
2. According to number of classifiers,

create a sample out of the data by
replacement

3. Now, train each classifier with a
different sample

4. At the end of the process, take the vote
of each classifier to classify the data

The following figure will clarify the concept
of our process:

>

Figure 9.17: Bagged stack of classifiers

Why do we do bagging for a stacking
process? As we have already discussed,
bagging is very effective at reducing
correlations between classifiers, as all of the
classifiers receive different samples from the

same data population. If the correlation
between the classifiers is less, the problem of
high variance and high bias can also be
countered by the process.

We have already used bagging with decision
trees successfully, so why are we combining
different models? As we have seen in the
previous chapter, each classifier has its own
weaknesses and strengths; stacking can
overcome the weakness of a classifier by
using the strengths of others.

As we have seen data of linearly separable
and non-separable classes, stacking can also
counter the problem of choosing the right
classifier, because a single classifier may not
be that powerful to fit complex datasets.

So, I think we have talked enough about the
process and it's time for action. We are going
to implement the most powerful classifier for
a well-known practical issue: Spam
classification. But wait! We have already
implemented the KNN algorithm for this

problem, so why are we again going to target
the same problem? You are right, but do you
remember that the classification accuracy we
were getting was about 80%? Do you think it
is an acceptable performance in the real
world? Well, the performance of a classifier
depends on various factors and it is quite
subjective to the dataset, too. As a spam
classification dataset is very complex, it is
difficult to get high accuracy on this data; so,
we will use the power of unity for this.

Spam classification
with stacking
Let's start with the process. We will use a
publicly available dataset for our application;
this dataset is available at: https://archive.ics.uci.edu
/ml/datasets/spambase. You can easily download it
and store it in the form of a .csv file, as we
already have functions to read a .csv file and
load the dataset into a numpy array (refer to C
hapter 3, Random Forest).

The following is the dataset information as
found on the given web address.

https://archive.ics.uci.edu/ml/datasets/spambase

Dataset information
The spam concept is diverse: advertisements
for products/websites, make money fast
schemes, chain letters, pornography, and so
on.

Our collection of spam e-mails came from
our postmaster and individuals who had filed
spam. Our collection of non-spam e-mails
came from filed work and personal e-mails;
hence, the word george and the area code
650 are indicators of non-spam. These are
useful when constructing a personalized spam
filter. One would either have to blind such
non-spam indicators or get a very wide
collection of non-spam to generate a general-
purpose spam filter.

Attribute
information
You can get all available information on the
preceding link. I will be covering only a basic
understanding of the dataset. There are 57
attributes in the dataset; each attribute
signifies the frequency of that word in the
spam or non-spam emails. For example, in a
spam mail, there are certain words that have
more occurrences, such as money, rich, hot,
nearby, business, and so on. The following is a
snapshot of the attribute names:

word_freq_order: continuous.

word_freq_mail: continuous.

word_freq_receive: continuous.

word_freq_will: continuous.

word_freq_people: continuous.

word_freq_report: continuous.

word_freq_addresses: continuous.

word_freq_free: continuous.

word_freq_business: continuous.

word_freq_email: continuous.

On the left, there are attribute names, and on

the right is the type (continuous, discrete, and so
on).

There are 2,906 instances in the dataset where
the last instance has an incomplete set of
attributes, so we will keep an eye on it when
we perform our calculation.

For this purpose, we will need the following
dependencies:

A function to read .csv files
A function to convert string attribute
values to numerical form
We will need a function to create
samples of data
A function to stack the prediction for the
voting
Finally, a function to evaluate the
performance of the system

So we will use the same function to read .csv
files as we have used in Chapter 3, Random
Forest. The code block is as follows:

#Function to read csv file

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=393&action=edit#post_231

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

Now, we will add the function to convert
string values present in the data to the
numerical values; we have to do it first for
input attributes and then for the output class
variable. This function will also replace
missing values (if any) in the data with 0:

#Function to convert string attribute values to

float

def str_column_to_float(dataset, column):

 for row in dataset:

 if row[column]=='?':

 row[column] = 0

 else:

 row[column] =

float(row[column].strip())

We will create samples of data using the
cross_validation function(which we have
created in Chapter 3, Random Forest) to
evaluate random forest algorithm. This
function will create samples from the input
data by randomly selecting row indices:

https://cdp.packtpub.com/ensemble_machine_learning/wp-admin/post.php?post=393&action=edit#post_231

#Create cross validation sets

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index =

randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Now, we will add a function to stack the
predictions from different classifiers:

def stacking(dataset,models):

 stackedData = []

 for model in models:

 pred = model.predict(dataset)

 stackedData.append(pred)

 return np.transpose(stackedData)

We will add the get_accuracy function to
evaluate the model performance:

#Function to evaluate model performance

def getAccuracy(pre,ytest):

 count = 0

 for i in range(len(ytest)):

 if ytest[i]==pre[i]:

 count+=1

 acc = float(count)/len(ytest)

 return acc

We will add a helper function to create input
and output variables in separate arrays,
because all classifier classes in the sklearn
library need training data in (input, output)
form. The function shown here will do the
same work:

def getXY(dataset):

 dataset = np.array(dataset)

 shape = np.shape(dataset)

 X = dataset[:,0:shape[1]-1]

 Y = dataset[:,shape[1]-1]

 return X,Y

We create one small function to train the
classifier; so we train multiple classifiers in a
for loop:

def stack_fit(model,x,y):

 return model.fit(x,y)

Now, we are ready to go; let's start with the
main body of the function:

#Import numpy for array based operations

import numpy as np

#Import Support vector machine

from sklearn.svm.classes import SVC

#Decision Tree Classifier

from sklearn.tree import DecisionTreeClassifier

#KNN

from sklearn.neighbors import

KNeighborsClassifier

#Logistic Regression

from sklearn.linear_model import

LogisticRegression

#Random Forest Classifier

from sklearn.ensemble import

RandomForestClassifier

#Ada-boost Classifier

from sklearn.ensemble import AdaBoostClassifier

#Set Random seed

np.random.seed(1)

#Specify the file name

dataName = 'spamData.csv'

#Use function load_csv

dataset = load_csv(dataName)

#Create an empty list to store the dataset

dataset_new = []

#We will remove incomplete instance from the

dataset

for i in range(len(dataset)-1):

 dataset_new.append(dataset[i])

dataset = dataset_new

#Use function str_column_to_float from chapter

3 to convert string values to

float

for i in range(0, len(dataset[0])-1):

 str_column_to_float(dataset, i)

#Convert class variable to the numerical value

str_column_to_int(dataset, len(dataset[0])-1)

#Shuffle the dataset

np.random.shuffle(dataset)

#Create the sample out of datasets

splits = cross_validation_split(dataset,7)

#Load all the classifiers

clf1 = AdaBoostClassifier()

clf2 = DecisionTreeClassifier()

clf3 = KNeighborsClassifier(n_neighbors=1)

clf4 = RandomForestClassifier()

clf5 = LogisticRegression()

clf6 = SVC(kernel='rbf')

#Stack all the classifier

models = [clf1,clf2,clf3,clf4,clf5,clf6]

#Initialize the variable for trained classifier

trained =[]

#Train the model and add to the stack

for i in range(len(models)):

 model = models[i]

 x,y = getXY(splits[i])

 trained.append(stack_fit(model, x, y))

#Create test data from left split

xtest,ytest = getXY(splits[6])

#Generate the stacked predictions

stackedData = stacking(xtest, trained)

#Here we will calculate individual accuracies

of models

for i in range(np.shape(stackedData)[1]):

 acc = getAccuracy(stackedData[:,i], ytest)

 print("Accuracy of model %i is %.2f"%(i,

(100*acc)))

Let's see the individual accuracy of each
model:

Accuracy of model 0 is 93.73 # AdaBoost

classifier

Accuracy of model 1 is 88.19 # Decision Tree

classifier

Accuracy of model 2 is 73.73 # KNN classifier

Accuracy of model 3 is 91.33 # Random Forest

Classifier

Accuracy of model 4 is 93.49 # Logistic

Regression

Accuracy of model 5 is 79.04 # Support Vector

Machine

As you can see, all of our six classifiers
perform differently on the same population of
the data. SVM and KNN classifiers are
underperforming compared to other
classifiers. Well, this was expected as the
data is very complex and we already know
the previous performance of the KNN
classifier. So, this is not a surprise, but notice
that the AdaBoost classifier and logistic
regression are outperforming the random
forest and decision tree classifier. This is
quite surprising because logistic regression is
way simpler than random forest. Now, it's
time to take the votes from each classifier and
conclude at the final level. What do you

think? Can we outperform the performance of
logistic regression (93.49%)?

 #Take the vote of each classifier and create

final prediction

predLr =

[np.bincount(np.array(pred,dtype="int64")).argmax()

 for pred in stackedData]

#Evaluate the stacked model performance

accLr = getAccuracy(ytest, predLr)

print("\nAccuracy of stacking is %.2f"%

(100*accLr))

After execution, we get:

Accuracy of stacking is 94.94

WOW! We have got an accuracy of almost
95%; this is quite a good performance as
compared to 80% of the previous KNN. And
this is with all of the default parameters. If we
tune the parameters using grid search and
evaluate with cross validation, there are
chances of more improvement in the final
accuracy.

I have run some heuristics and got that if we
remove the SVM from the classifier stack, we
will get the following stats:

Accuracy of model 0 is 94.83

Accuracy of model 1 is 90.29

Accuracy of model 2 is 70.66

Accuracy of model 3 is 94.63

Accuracy of model 4 is 94.01

Accuracy of stacking is 96.28

Can you believe this!! We have got an
accuracy of more than 96% with all of the
default parameters. Remember, I am taking
random samples, so there are chances that
you may get a different performance. But
believe me, it will be more than what we have
got previously.

How to choose
classifiers?
Now the question is: how to choose a
classifier to include in the stack? The answer
is very difficult; it is similar to selecting
hyperparameters for the classifier. The choice
of classifiers for stacking is quite subjective
and it is also an area of research. For the time
being, you can run some heuristics tests and
decide which classifiers are giving you less
correlation in their prediction results.

However, you can work on the following
points:

Use feature importance as a selection
criteria. It can give an overview of
information overlap between the
classifiers. We have discussed feature
importance earlier in the chapter.
Check the correlation between the

predictions of the classifiers.
You can use the grid search method to
choose the best combination of
classifiers.
Cross validation is always a good choice
for choosing the best classifier
combination.

Summary
We started with feature selection methods,
where we discussed the importance of feature
selection and also its benefits by
implementing various feature selection
algorithms using the sklearn library. We saw
how feature selection reduces the curse of
dimensionality and improves the performance
of the classifier by reducing the variance and
bias trade-off.

We discussed SVMs in quite a bit of detail by
implementing one from scratch. We also saw
how it optimizes its loss function using the
gradient descent algorithm, and used the
kernel trick to address the problem of non-
separable datasets.

In the end, we came back to stacking, this
time with a bang. We used six classifiers to
create a stack of classifiers and used the
bagging strategy to predict the output of the

classifier, not to mention that we got over
16% improvement in the classification of the
spam dataset than with KNN classification.
Finally, we talked a little bit about the
strategy for selecting the classifiers for the
stacking.

So, I think this is enough talk about stacking
classifiers. There are innumerable ways to
improve the classification accuracy of
ensemble systems. As we cannot discuss all
of them at once, I encourage you all to visit htt
ps://www.kaggle.com/arthurtok/introduction-to-ensembling-
stacking-in-python to get more information
regarding the stacking of classifiers. At the
end, keep practicing because practice makes a
better classification module!

https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python

Modern Day
Machine Learning
We have just finished a discussion on
traditional and conventional ensemble
methods used in machine learning and data
analytics. We have seen parametric (logistic
regression and perceptron) and nonparametric
algorithms (decision trees, KNN, and
AdaBoost) for predictive analysis tasks.
Nowadays, there are quite a plethora of data
analytics field as we are overfilled with
digital data. As this field is growing too fast,
data complexity is also increasing
proportionally. The algorithms we have
learned so far may not give the perfect
solution for very complex datasets, such as
image recognition tasks or tasks related to
word embedding. These two terms are quite
related to natural language processing.

In short, Natural Language Processing

(NLP) is mainly about solutions in speech
recognition, image classification, document
classification, or a very new but dominating
field of generative models. We can deal with
most of the domains with our conventional
machine learning, too, but there is always a
compromise with the accuracy as it is very
difficult to find the correct set of distinctive
features to represent the dataset. If we cannot
find the correct set of features for prediction
tasks, we will get irrelevant predictions from
any state-of-the-art algorithm.

Let's understand this with an example.
Suppose we want to create an ML solution
for classification of images of cars from one
million other images of 1,000 other objects
such as buses, animals, houses, and so on. As
we know, a traditional machine learning
pipeline consists of the following key points:

Data interpretation or exploratory data
analysis (the behavior of a dataset, linear
or nonlinear)
Feature extraction or feature engineering

(to represent a dataset in a concise,
meaningful way)
Feature selection (to reduce redundant or
irrelevant features)
Algorithm selection (the one best suited
for the dataset)
Deployment of the solution

So again, we will end up with a solution like
this:

Figure 10.1: Machine learning pipeline

Let's try to fit the preceding example into this
pipeline. We will assume that our data is
cleaned so that we can simplify the concept.

Our task will start with feature engineering.
Here, feature engineering is related to

representing images of cars in a meaningful
way such that we can differentiate the images
and other objects with these features. One can
think of raw pixel intensities for the task, but
if we keep in mind that there may be a huge
variation in color, lighting conditions, and car
structures, it will be quite difficult to
distinguish cars from other objects. We have
dealt with feature engineering in the face
detection task earlier. For such tasks,
feature engineering is a useful thing. Where
we apply different kinds of algorithms to
quantify colors of images, we can apply
various frequency or shape-based filters to
find out high-frequency components (such as
edges and corners) of the object or low-
frequency components such as uniformity of
intensity levels using weighted averages, and
so on. Please keep in mind that we want to
extract the features that can differentiate a car
from 1,000 other objects.

What do you think? What are the chances that
we've got very relative features to classify our
object of interest? Suppose we want extract

frequency-based features. What should be the
range of frequencies we need to extract for
our images? And there are many more
variables in the images such as another object
overlapping with the object of interest. In
such cases, we can go for wrong detection
and classification.

So, is there no way to find out the correct
features for our kind of problem? There is. In
fact, we have used these types of features
earlier in the face detection task:

Figure 10.2: Haar cascade features used in object detection

However, these features have their own
limitations; for example, these features are
not rotation or scale invariant. If we want to
detect an image that consists of various sizes
of faces, we have to perform the operation for
multiple scales (different sizes of images). If
the faces are not straight, there are less
chances of detection. Last but not least, as we
have a huge dataset but a limited set of
classification parameters, there are chances of
high bias in the classification. This is because
it's very difficult to construct a huge classifier
for such an application.

So, is there any solution for this kind of
problem? Yes, there is. It is modern day
machine learning algorithms: Artificial
Neural Networks (ANNs), or more
precisely, Convolutional Neural Networks
(CNNs). Or the modern day ML legend—
deep learning! But how can CNNs help us to
solve these kinds of problems? Well, the
answer is pretty simple. They learn the
features by themselves. What? By
themselves! Yes, you read it correctly. CNNs

are a special kind of machine learning
algorithms that learn the underlying
properties of data by themselves. More
precisely, these algorithms learn weight
parameters as the features of datasets.

CNN are a special kind of ANN themselves.
They have many similarities as well as
differences, but the origin of both of them is
the same. The perceptron. Yes, the same
perceptron we saw earlier.

If you forgot, the following is a figure
showing a perceptron:

>

Figure 10.3: Perceptron architecture

ANNs are also known as multilayer

perceptron models; they consist of a lot more
than one neuron. We will start our discussion
with a description of ANNs and move on to
CNNs. So let’s not waste time and start the
discussion.

Artificial Neural
Networks (feed-
forward)
We have got an informal introduction to
ANNs as multilayer perceptron models. What
does this actually mean? We developed a
perceptron algorithm in Chapter 8, Stacked
Generalization. According to its definition,
the perceptron is a mathematical model of a
biological neuron. In actual neurons, the
dendrite receives electrical signals from the
axons of other neurons, but in a perceptron,
these electrical signals are represented as
numerical values. At the synapses between
the dendrite and axons, electrical signals are
modulated in various amounts. This is also
modeled in the perceptron by multiplying
each input value by a value called weight. An
actual neuron fires an output signal only

when the total strength of the input signals
exceeds a certain threshold. We model this
phenomenon in a perceptron by calculating
the weighted sum of the inputs to represent
the total strength of the input signals and then
applying a step function to the sum to
determine its output. As in biological neural
networks, this output is fed to other
perceptrons.

When we combine many perceptrons in a
structured way, as shown in the next figure,
the structure is known as ANN. From now
on, we will call them neurons, but there is a
basic difference between neurons and
perceptrons. Perceptrons always output
binary values because of their step function
behavior, while neurons are a special kind of
perceptron with a transfer function, such as
sigmoid. So, they can generate continuous
values at the output.

If you observe the figure, you can see that
there are total 14 perceptrons in the model: 6
in the first level and 4, 3, and 1 in the

following levels. These levels are known as
different layers of the network.

The leftmost layer of the network is known as
input layer, and the rightmost layer is known
as output layer. All other layers between
these two are known as hidden layers. There
is no technical explanation on why to call
them hidden layers. They are called so
because the user does not interact in any kind
of data-related operation with them:

Figure 10.4: Artificial Neural Network (feed-forward
network)

The connections you can see between one
layer of neurons to the next layer are
weighted connections; that means when one
neuron from the first layer passes any value
to the next neuron, it will be multiplied with
the connection's weight (W) and it will pass it
to the next layer. The multiplication of input
values and weight values is straightforward:

Here, W is the weight of the connection and b
is the bias, while X and y are the input and
output values, respectively.

So, when a neuron from the hidden layer
receives any input from the previous layer
(currently the input layer), it is the sum of all
weighted connections from the previous layer
to the hidden layer.

The following figure shows this operation:

Figure 10.5: How a neural network works

The preceding figure shows the calculation of
input received at H1. If we expand it, it is
like:

We can summarize this as:

Where i and j are ith and jth neurons of
layers l-1 and l, respectively. k is the kth

weight between layer l-1 and layer l. So, by
the preceding equation, we can estimate the

input of any neuron in a hidden layer.

Now, let us talk about the output of neuron
H1. As simple as that, the output of a neuron
should be the sum of the products, as we have
seen in a previous paragraph. However, there
is one problem in this. If we choose the sum
of products as the output of any neuron in the
network, it can be a very large number, or it
may be a negative number. So, to keep the
number in a defined range, we will choose an
activation function to transform the input
number into a defined range. There are many
types of activation functions available, such
as sigmoid (logistic), tanh, softmax, and so
on. There should be an important property of
activation. It must be a differentiable
function. Why? Because gradient-based
methods are involved during the weight
learning process, such as gradient descent, so
we need to calculate the derivative of the
activation function.

After applying the activation to the neuron,
the output will change as follows:

Sigmoid is very a popular choice of
activation function. It is applied as follows:

Now, this output will pass
through the weighted
connection of the current layer
and the next layer and will be
summed with the output of other
neurons. And the process will
continue until the output layer.

As you have seen in this process, we have
just moved forward from the input to the
output layer. There was no feedback or
recursion applied. Such neural networks are
known as feed-forward neural networks
and the procedure of moving forward is
known as forward propagation.

How does ANN
work?
I will discuss this with an example of a very
popular machine problem: handwriting
recognition. This problem consists of images
of handwritten digits. They are written by
more than 50,000 people; so, there is huge
variability in the structure (shape and
alignment) of each digit as each person has
his/her own style of writing, which makes it a
very complex visual recognition problem. To
recognize individual digits, we will use a
three-layer neural network. The input layer of
the network contains neurons encoding the
values of the input pixels. As discussed in the
next section, our training data for the network
will consist of many 28x28 pixel images of
scanned handwritten digits, and so the input
layer contains 784 = 28×28 neurons. For
simplicity, I've omitted most of the 784 input

neurons in the diagram.

The input pixels are grayscale, with a value
of 0.0 representing white, 1.0 representing
black, and in-between values representing
gradually darkening shades of gray:

Figure 10.6: ANN for a digit recognition problem

The second layer of the network is a hidden
layer. We denote the number of neurons in
this hidden layer by n, and we'll experiment
with different values for n. The example
shown illustrates a small hidden layer
containing just n=15 neurons.

The output layer of the network contains 10
neurons. If the first neuron fires, that is, has
an output ≈1, then that will indicate that the
network thinks the digit is a 0. If the second
neuron fires, then that will indicate that the
network thinks the digit is a 1, and so on. A
little more precisely, we number the output
neurons from 0 through 9 and figure out
which neuron has the highest activation
value. If that neuron is, say, neuron number 6,
then our network will guess that the input
digit was a 6, and so on for the other output
neurons.

Our input images look something like this:

Figure 10.7: Digits' images in the MNIST dataset

 So, for instance, we'd like our program to
recognize that the first digit in the preceding
image:

 a 5

You might wonder why we use 10 output
neurons. After all, the goal of the network is
to tell us which digit (0, 1, 2,…,9)
corresponds to the input image. A seemingly
natural way of doing that is to use just four
output neurons, treating each neuron as
taking on a binary value depending on
whether the neuron's output is closer to zero
or to one. Four neurons are enough to encode
the answer, since 2^4=16 is more than the ten
possible values for the input digit. Why
should our network use ten neurons instead?
Isn't that inefficient?

To understand why we do this, it helps to
think about what the neural network is doing
from the first principles. Consider the case

where we use 1010 output neurons. Let's
concentrate on the first output neuron; the
one that's trying to decide whether or not the
digit is a 0. It does this by weighing up
evidence from the hidden layer of neurons.
What are those hidden neurons doing? Well,
just suppose for the sake of argument that the
first neuron in the hidden layer detects
whether or not an image like the following is
present:

Figure 10.8: Part of a digit image

It can do this by heavily weighting input
pixels that overlap with the image, and only
lightly weighting the other inputs.

In a similar way, let's suppose for the sake of
argument that the second, third, and fourth
neurons in the hidden layer detect whether or
not the following images are present:

Figure 10.9: Different parts of a digit image

As you may have guessed, these four images
together make up the 0:

Figure 10.10A: Complete digit image by combining different
parts

So, if all four of these hidden neurons are
firing, then we can conclude that the digit is
a 0. Of course, that's not the only sort of
evidence we can use to conclude that the
image was a 0; we can legitimately get a 0 in
many other ways (say, through translations of
the preceding images or slight distortions).
But it seems safe to say that at least in this
case, we'd conclude that the input was a 0.

Supposing that the neural network functions

in this way, we can give a plausible
explanation for why it's better to have ten
outputs from the network rather than four. If
we had four outputs, then the first output
neuron would be trying to decide what the
most significant bit of the digit was, and
there's no easy way to relate that most
significant bit to simple shapes like those
shown in the preceding images. It's hard to
imagine that there's any good historical
reason the component shapes of the digit will
be closely related to (say) the most significant
bit in the output.

Now, with all that said, this is all just a
heuristic. Nothing says that the three-layer
neural network has to operate in the way I
described, with the hidden neurons detecting
simple component shapes. Maybe, a clever
learning algorithm will find some assignment
of weights that lets us use only four output
neurons. But as a heuristic, the way of
thinking I've described works pretty well and
can save you a lot of time in designing good
neural network architectures.

Now, we have discussed quite a lot about the
architecture and working of ANN, but we
have not discussed how to train the network.
Well, in the next section, we will look for
that.

Training of ANNs
The training of ANNs is a tricky task. We
will use the same gradient descent algorithm
we had used during training of perceptron,
logistic regression, and SVM, but it will be
very much similar to the perceptron model.

Let's first summarize the process of the
gradient descent algorithm. For a detailed
explanation, please refer to Chapter 8, Stacked
Generalization. Here, we will do a quick
review of the algorithm.

Gradient descent is a gradient-based
optimization algorithm. It helps us move our
function's parameters towards the direction of
gradients, which eventually helps us to obtain
the minimum value of our function for
selected parameter values. We will start with
defining our cost function. As we have
already discussed, a cost function is a
function of our network variables. We want

to calculate the optimum value for the
variables so that we can minimize the value
of the cost function. Cost functions are also
known as objective functions. Here, we will
use sum of squares as a cost function to
optimize the network parameters. It is a
quadratic function.

The preceding equations shows the cost
function, which we want to minimize. We are
simply calculating the sum of squares of error
between the actual and predicted output.

Where the predicted output is:

The preceding function will lead us to an
assumption. If we make slight changes to the
values of W and b, we can make changes to
cost C. So, our task will be to find out the

best pair of W and b that will lead us to a
negative value of C.

The partial derivative of C with respect to
 W and b will help us to estimate the direction
of the gradient, which will eventually help us
find out the best values of W and b that allow
us to get the minimum value of the function.

When we make a derivation for the preceding
function step by step, we will end up with the
weight and bias changing rules. Let's see that:

 (A)

By repeatedly applying this update rule, we
can roll down the hill and hopefully find a
minimum of the cost function.

For Stochastic Gradient Descent (SGD):

 (B)

Where m is the size of the mini batch on
which we want to update the weights and
biases.

I have just written down the most important
equations for limiting our scope to practical
implementation. I will strongly advise you to
revisit our gradient descent discussion from C
hapter 8, Stacked Generalization. Only then
will you be able to understand the whole
process.

So, gradient descent will help us to update the
weights in the network, the same as we have
done in the case of perceptron. Here, I want
to ask you a question. We have an ANN with
three layers: input, hidden, and output. When
we calculate the error (or cost) between the

predicted output and actual output, how
will we use this error to learn the weights of
the hidden layer?

Learning by
backpropagation
At the end of the previous paragraph, I left
you with a question on how a hidden layer of
the network will know about the error,
because only the output layer’s neuron will
know about the difference between actual
output and predicted output! So, as you can
see, the hidden layer is completely unaware
of what is happening at the last layer. What to
do in that case? Well, there is a solution. We
can pass the output error to the hidden layer
through the same connections that were used
during the forward pass. This procedure is
known as backpropagation.

So, during the training of the network, we
will calculate the error at the output layer,
and then we will pass the same error to the
hidden layer using the same connections and
weights. Thus, we can use gradient descent

for optimization of the layer parameters
(W,b). How does it work? We have to look
into that.

The backpropagation algorithm was
originally introduced in the 1970s, but its
importance wasn't fully appreciated until a
discussion of learning representations by
back-propagating errors (http://www.nature.com/nat
ure/journal/v323/n6088/pdf/323533a0.pdf) presented
by David Rumelhart, Geoffrey Hinton,
and Ronald Williams. That paper describes
several neural networks where
backpropagation works far faster than earlier
approaches to learning, making it possible to
use neural nets to solve problems that had
previously been unsolvable. Today, the
backpropagation algorithm is the workhorse
of learning in neural networks.

As the name suggests, we will start moving
backwards from the output layer to the input
layer. So, let's start with it. As you know, we
want to optimize the cost function, which is
our ultimate objective. This optimization is

http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf

directly related to changing variables (W,
b) in the network. So, our total concentration
will always be on changing variable values
and the amount of change will depend on the
error produced at the output layer. We will
start from there onwards.

We will denote the error by δ. The error for a
neuron j in any layer l will be:

 (1)

Here, a is the activation applied to the actual
output z of neuron j. is the derivative of our
sigmoid function applied to input z. C is our
quadratic cost function. We can write the
preceding equation in a simplified form as:

 (1.1)

The preceding equation is quite intuitive as
we know the cost function is nothing but the
difference between our final layer activation
a (that is, the predicted output) and actual

output y.

Now, we will pass this error to the next layer
(backwards) through the connected weights,
as follows:

 (2)

Where (Wl+1)T is the transpose of the weight
matrix Wl+1 for the (l+1)th layer. This
equation appears complicated, but each
element has a nice interpretation. Suppose we
know the error δl+1 at the (l+1)th layer. When
we apply the transpose weight matrix, ,
we can think intuitively of this as moving the
error backward through the network, giving
us some sort of measure of the error at the
output of the lth layer. We then take the
Hadamard product . This moves the
error backward through the activation
function in layer l, giving us the error δl in the
weighted input to layer l.

So, if you pay attention to equations (1.1) and
(2), we can calculate the error for any layer

from output to input layer, and it will help us
to optimize our cost function.

Now, we have the error in our hands. This is
the time to calculate the change required to
make in the weight value and bias value so
that we can move our variables in the
direction of gradients.

First, we will talk about the change required
to make in the weight value.

For that, we want to calculate the value of W',
which can be written in equation form as:

 (3)

We can calculate this value by:

 (4)

Here, you need to understand that Wjk is the
connection between weight j of layer l and

weight k of layer (l+1). So, we can get the
change in the weight using the activation of
the previous layer (l-1), which is the input to
the current layer l and error at the current
layer. This can be calculated from equation
(2). We can generalize the preceding
equation so that we can calculate the change
in weight for any layer:

 (5)

Similarly, we can get the change in bias. As
bias is just an offset value, we can treat the
error at neuron j as the required change:

 (6)

In a more generalized form, we can write it
as:

 (7)

As you can see, we can calculate all of them
using NumPy in Python, but it is not in our
current scope to implement the
backpropagation algorithm in Python for
training the neural network.

Now we can use expression (A) of gradient
descent when we work with batch gradient
descent, where we will update the weights of
the network after calculating the gradients for
all the examples in the dataset.

Or we can use expression (B), where we can
divide our dataset into many small batches
and then train the network in the batch
gradient style; but now we will update the
weights using gradients of individual batch
samples. These batches have randomly
shuffled data samples. This procedure is
known as mini-batch gradient descent, or by
the well-known term, SGD. In expression
(B), m is the size of mini-batches; we will
talk about its effect on the network training
when we really train a network.

So, we have seen the derivation of
backpropagation in this section. I have tried
to avoid math as much as I can; if you want
more information about the backpropagation
concepts, you can refer to: http://neuralnetworksand
deeplearning.com/chap2.html. This is a very nice
article that will give you an in-depth
understanding of the equations we have used
in this section.

Now, we've learned all the required concepts
of the process of training a neural network.
The rest of the concepts we will try to
complete during our practical implementation
of the problem in Python using Keras and
TensorFlow libraries.

http://neuralnetworksanddeeplearning.com/chap2.html

ANN implementation
using Keras and
TensorFlow
In this section, we will implement the
solution for the handwriting recognition
problem. We introduced the problem in
previous sections. Now, we will see how we
can create, train, and test a neural network
using two third-party libraries: Keras and
TensorFlow.

Before moving towards the solution of the
problem, we should discuss both of the
libraries first. We will just cover an
introduction to them.

TensorFlow for
machine learning
TensorFlow is a machine learning library
developed by Google. It is a free open source
library, designed mainly for building ANN
for practical applications. It is library for
numerical computation using data flow
graphs. Nodes in the graph represent
mathematical operations, while the graph
edges represent the multidimensional data
arrays (tensors) communicated between them.

The flexible architecture allows you to deploy
computations to one or more CPUs or GPUs
in a desktop, server, or mobile device with a
single API. TensorFlow was originally
developed by researchers and engineers
working on the Google Brain team within
Google's machine intelligence research
organization for the purpose of conducting
machine learning and deep neural networks

research, but the system is generally enough
to be applicable in a wide variety of other
domains as well.

You can download and install the package
using pip in Python via the command line, as
follows:

C:\>Python –m pip install Tensorflow

TensorFlow contains many Python classes to
construct, train, validate, and deploy a neural
network with or without GPU support.

Keras for machine
learning
Keras is also an open source free library. It is
a high-level neural networks API written in
Python and capable of running on top of
TensorFlow. It was developed with a focus
on enabling fast experimentation. Being able
to go from idea to result with the least
possible delay is key to doing good research.

Actually, Keras is not a machine learning
library; it is more of a wrapper that can
simplify code writing for machine learning
solutions. When we build and train a neural
network in Keras, it calls TensoFlow at the
backend and uses TensorFlow's classes to
perform the required computation tasks.

These are the guiding principles of Keras:

User friendliness: Keras is an API

designed for human beings, not
machines. It puts user experience in the
front and center. Keras follows best
practices for reducing cognitive load; it
offers consistent and simple APIs,
minimizes the number of user actions
required for common use cases, and
provides clear and actionable feedback
upon user error.
ModularityL: A model is understood as
a sequence or a graph of standalone,
fully configurable modules that can be
plugged together with as few restrictions
as possible. In particular, neural layers,
cost functions, optimizers, initialization
schemes, activation functions, and
regularization schemes are all standalone
modules that you can combine to create
new models.
Easy extensibility: New modules are
simple to add (as new classes and
functions) and existing modules provide
ample examples to be able to easily
create new modules allows for total
expressiveness, making Keras suitable

for advanced research.
Work with Python: There are no
separate model configuration files in a
declarative format. Models are described
in Python code, which is compact, is
easier to debug, and allows ease of
extensibility.

Digit classification
using Keras and
TensorFlow
As we have discussed before, we will have a
dataset with images of handwritten digits.
Here is an introduction to the dataset.

The MNIST database contains 60,000
training images and 10,000 testing
images. Half of the training set and half of the
test set were taken from NIST's training
dataset, while the other half of the training set
and the other half of the test set were taken
from NIST's testing dataset. There have been
a number of scientific papers on attempts to
achieve the lowest error rate. One paper, by
using a hierarchical system of CNNs,
manages to get an error rate on the MNIST
database of 0.23 percent. The original
creators of the database keep a list of some of

the methods tested on it. In their original
paper, they used a support vector machine to
get an error rate of 0.8 percent.

Images in the dataset look like this:

So let's not waste our time and start
implementing our very first neural network in
Python.

Let’s start the code by importing the
supporting projects.

Imports for array-handling and plotting

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

Keras already has the MNIST dataset as a
sample dataset, so we can import it as it is.
Generally, it downloads the data over the
internet and stores it into the database. So, if
your system does not have the dataset,
Internet will be required to download it:

Keras imports for the dataset and building

our neural network

from keras.datasets import mnist

Now, we will import the Sequential and
load_model classes from the keras.model class.
We are working with sequential networks as
all layers will be in forward sequence only.
We are not using any split in the layers. The
Sequential class will create a sequential model
by combining the layers sequentially. The
load_model class will help us to load the trained
model for testing and evaluation purposes:

#Import Sequential and Load model for creating

and loading model

from keras.models import Sequential, load_model

In the next line, we will call three types of
layers from the keras library. Dense layer
means a fully connected layer; that is, each
neuron of current layer will have a
connection to the each neuron of the previous
as well as next layer.

The dropout layer is for reducing overfitting
in our model. It randomly selects some
neurons and does not use them for training

for that iteration. So there are less chances
that two different neurons of the same layer
learn the same features from the input. By
doing this, it prevents redundancy and
correlation between neurons in the network,
which eventually helps prevent overfitting in
the network.

The activation layer applies the activation
function to the output of the neuron. We will
use rectified linear units (ReLU) and the
softmax function as the activation layer. We
will discuss their operation when we use
them in network creation:

#We will use Dense, Drop out and Activation

layers

from keras.layers.core import Dense, Dropout,

Activation

from keras.utils import np_utils

So we will start with loading our dataset by
mnist.load. It will give us training and testing
input and output instances.

Then, we will visualize some instances so
that we know what kind of data we are

dealing with. We will use matplotlib to plot
them.

As the images have gray values, we can
easily plot a histogram of the images, which
can give us the pixel intensity distribution:

#Let's Start by loading our dataset

(X_train, y_train), (X_test, y_test) =

mnist.load_data()

#Plot the digits to verify

plt.figure()

for i in range(9):

 plt.subplot(3,3,i+1)

 plt.tight_layout()

 plt.imshow(X_train[i], cmap='gray',

interpolation='none')

 plt.title("Digit: {}".format(y_train[i]))

 plt.xticks([])

 plt.yticks([])

plt.show()

When we execute our code for the preceding
code block, we will get the output as:

Figure 10.10: MNIST digit images sample

#Lets analyze histogram of the image

plt.figure()

plt.subplot(2,1,1)

plt.imshow(X_train[0], cmap='gray',

interpolation='none')

plt.title("Digit: {}".format(y_train[0]))

plt.xticks([])

plt.yticks([])

plt.subplot(2,1,2)

plt.hist(X_train[0].reshape(784))

plt.title("Pixel Value Distribution")

plt.show()

The histogram of an image will look like this:

Figure 10.11: Pixel intensity distribution of an image

Print the shape before we reshape and

normalize

print("X_train shape", X_train.shape)

print("y_train shape", y_train.shape)

print("X_test shape", X_test.shape)

print("y_test shape", y_test.shape)

Currently, this is shape of the dataset we
have:

X_train shape (60000, 28, 28)

y_train shape (60000,)

X_test shape (10000, 28, 28)

y_test shape (10000,)

As we are working with 2D images, we
cannot train them as with our neural network.
For training 2D images, there are different
types of neural networks available; we will
discuss those in the future.

To remove this data compatibility issue, we
will reshape the input images into 1D vectors
of 784 values (as images have size 28X28).
We have 60000 such images in training data
and 10000 in testing:

As we have data in image form convert it to

row vectors

X_train = X_train.reshape(60000, 784)

X_test = X_test.reshape(10000, 784)

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

Normalize the input data into the range of 0
to 1 so that it leads to a faster convergence of
the network. The purpose of normalizing data
is to transform our dataset into a bounded
range; it also involves relativity between the
pixel values. There are various kinds of
normalizing techniques available such as
mean normalization, min-max normalization,
and so on:

Normalizing the data to between 0 and 1 to

help with the training

X_train /= 255

X_test /= 255

Print the final input shape ready for

training

print("Train matrix shape", X_train.shape)

print("Test matrix shape", X_test.shape)

Let's print the shape of the data:

Train matrix shape (60000, 784)

Test matrix shape (10000, 784)

Now, our training set contains output
variables as discrete class values; say, for an
image of number eight, the output class value
is eight. But our output neurons will be able
to give an output only in the range of zero to
one. So, we need to convert discrete output
values to categorical values so that eight can
be represented as a vector of zero and one
with the length equal to the number of
classes. For example, for the number eight,
the output class vector should be:

8 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

One-hot encoding using keras' numpy-related

utilities

n_classes = 10

print("Shape before one-hot encoding: ",

y_train.shape)

Y_train = np_utils.to_categorical(y_train,

n_classes)

Y_test = np_utils.to_categorical(y_test,

n_classes)

print("Shape after one-hot encoding: ",

Y_train.shape)

After one-hot encoding of our output, the
variable’s shape will be modified as:

Shape before one-hot encoding: (60000,)

Shape after one-hot encoding: (60000, 10)

So, you can see that now we have an output
variable of 10 dimensions instead of 1.

Now, we are ready to define our network
parameters and layer architecture. We will
start creating our network by creating a
Sequential class object, model. We can add
different layers to this model as we have done
in the following code block.

We will create a network of an input layer,
two hidden layers, and one output layer. As
the input layer is always our data layer, it
doesn't have any learning parameters. For
hidden layers, we will use 512 neurons in

each. At the end, for a 10-dimensional output,
we will use 10 neurons in the final layer:

Here, we will create model of our ANN

Create a linear stack of layers with the

sequential model

model = Sequential()

#Input Layer with 512 Weights

model.add(Dense(512, input_shape=(784,)))

#We will use relu as Activation

model.add(Activation('relu'))

#Put Drop out to prevent over-fitting

model.add(Dropout(0.2))

#Add Hidden layer with 512 neurons with relu

activation

model.add(Dense(512))

model.add(Activation('relu'))

model.add(Dropout(0.2))

#This is our Output layer with 10 neurons

model.add(Dense(10))model.add(Activation('softmax'))

After defining the preceding structure, our
neural network will look something like this:

Figure 10.12: Feed-forward neural network for our problem's
solution

The Shape field in each layer shows the shape
of the data matrix in that layer, and it is quite
intuitive. As we first get the multiplication of
input with length of 784 values to 512 neurons,
the data shape at Hidden-1 will be 784 X
512. It will be calculated similarly for the
other two layers.

We have used two different kinds of
activation functions here. The first one is
ReLU and the second one is sofmax
probabilities.

We will give some time to discuss these two.
ReLU prevent the output of the neuron from
becoming negative. The expression for relu
function is:

 (8)

So if any neuron produces an output less than
0, it converts it to 0. We can write it in
conditional form as:

(9)

You just need to know that ReLU is a slightly
better activation function than sigmoid. If we
plot a sigmoid function, it will look like:

Figure 10.13: Sigmoid neuron

If you look closer, the sigmoid function starts
getting saturated before reaching its
minimum (0) or maximum (1) values. So at
the time of gradient calculation, values in the
saturated region result in a very small
gradient. That causes a very small change in
the weight values, which is not sufficient to
optimize the cost function. Now, as we go

more backward during the backpropagation,
that small change becomes smaller and
almost reaches zero. This problem is known
as the problem of vanishing gradients. So, in
practical cases, we avoid sigmoid activation
when our network has many stacked layers.

Whereas if we see the expression of ReLU
activation, it is more like a straight line:

Figure 10.14: Rectification linear unit

So, the gradient of the preceding function will
always a non-zero value until and unless the
output itself is a zero value. Thus, it prevents
the problem of vanishing gradients.

We have discussed the significance of the

dropout layer earlier and I don’t think that it
is further required. We are using 20% neuron
dropout during the training time. We will not
use the dropout layer during the testing time.

Now, we are all set to train our very first
ANN, but before starting training, we have to
define the values of the network
hyperparameters.

We will use SGD using adaptive momentum.
There are many algorithms to optimize the
performance of the SGD algorithm. You just
need to know that adaptive momentum is a
better choice than simple gradient descent
because it modifies the learning rate using
previous errors created by the network. So,
there are less chances of getting trapped at the
local minima or missing the global minima
conditions. We are using SGD with ADAM,
using its default parameters.

Here, we use batch_size of 128 samples. That
means we will update the weights after
calculating the error on these 128 samples. It is

a sufficient batch size for our total data
population.

We are going to train our network for 20
epochs for the time being. Here, one epoch
means one complete training cycle of all
mini-batches.

Now, let's start training our network:

#Here we will be compiling the sequential model

model.compile(loss='categorical_crossentropy',

metrics=['accuracy'], optimizer='adam')

Start training the model and saving metrics

in history

history = model.fit(X_train, Y_train,

 batch_size=128, epochs=20,

 verbose=2,

 validation_data=(X_test, Y_test))

We will save our trained model on disk so
that we can use it for further fine-tuning
whenever required. We will store the model
in the HDF5 file format:

Saving the model on disk

path2save =

'E:/PyDevWorkSpaceTest/Ensembles/Chapter_10/keras_mnist.h5'

model.save(path2save)

print('Saved trained model at %s ' % path2save)

Plotting the metrics

fig = plt.figure()

plt.subplot(2,1,1)

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='lower

right')

plt.subplot(2,1,2)

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper

right')

plt.tight_layout()

plt.show()

Let's analyze the loss with each iteration
during the training of our neural network; we
will also plot the accuracies for validation
and test set. You should always monitor
validation and training loss as it can help you
know whether your model is underfitting or
overfitting:

Test Loss 0.0824991761778

Test Accuracy 0.9813

Figure 10.15: Performance of our model during training
phase

As you can see, we are getting almost similar
performance for our training and validation
sets in terms of loss and accuracy. You can
see how accuracy is increasing as the number
of epochs increases. This shows that our
network is learning.

Now, we have trained and stored our model.
It's time to reload it and test it with the 10000
test instances:

#Let's load the model for testing data

path2save =

'D:/PyDevWorkspace/EnsembleMachineLearning/Chapter_10/keras_mnist.h5'

mnist_model = load_model(path2save)

#We will use Evaluate function

loss_and_metrics = mnist_model.evaluate(X_test,

Y_test, verbose=2)

print("Test Loss", loss_and_metrics[0])

print("Test Accuracy", loss_and_metrics[1])

#Load the model and create predictions on the

test set

mnist_model = load_model(path2save)

predicted_classes =

mnist_model.predict_classes(X_test)

#See which we predicted correctly and which not

correct_indices = np.nonzero(predicted_classes

== y_test)[0]

incorrect_indices =

np.nonzero(predicted_classes != y_test)[0]

print(len(correct_indices)," classified

correctly")

print(len(incorrect_indices)," classified

incorrectly")

So, here is the performance of our model on
the test set:

9813 classified correctly

187 classified incorrectly

As you can see, we have misclassified 187
instances out of 10000, which I think is a very
good accuracy on such a complex dataset. In
the next code block, we will analyze such

cases where we detect false labels:

#Adapt figure size to accomodate 18 subplots

plt.rcParams['figure.figsize'] = (7,14)

plt.figure()

plot 9 correct predictions

for i, correct in

enumerate(correct_indices[:9]):

 plt.subplot(6,3,i+1)

 plt.imshow(X_test[correct].reshape(28,28),

cmap='gray', interpolation='none')

 plt.title(

 "Predicted: {}, Truth:

{}".format(predicted_classes[correct],

y_test[correct]))

 plt.xticks([])

 plt.yticks([])

plot 9 incorrect predictions

for i, incorrect in

enumerate(incorrect_indices[:9]):

 plt.subplot(6,3,i+10)

plt.imshow(X_test[incorrect].reshape(28,28),

cmap='gray',

interpolation='none')

 plt.title(

 "Predicted {}, Truth:

{}".format(predicted_classes[incorrect],

y_test[incorrect]))

 plt.xticks([])

 plt.yticks([])

plt.show()

Figure 10.16: Classification of digit data using a trained
model

If you look closely, our network is failing on
such cases that are very difficult to identify
by a human, too. So, we can say that we are
getting quite a good accuracy from a very
simple model.

In this section, we discussed the basic
concepts of a feed-forward neural network.
Now, we will extend this network for
classifying images without reshaping them in
1D vectors, and we will also discuss how
these networks do feature engineering by
themselves.

Deep learning
While our neural network gives impressive
performance, that performance is somewhat
mysterious. The weights and biases in the
network were discovered automatically, and
that means we don't immediately have an
explanation of how the network does what it
does. Can we find some way to understand
the principles by which our network is
classifying handwritten digits? And given
such principles, can we do better?

To put these questions more starkly, suppose
that a few decades hence, neural networks
lead to Artificial Intelligence (AI). Will we
understand how such intelligent networks
work? Perhaps the networks will be opaque
to us, with weights and biases we don't
understand because they've been learned
automatically. In the early days of AI
research, people hoped that the effort to build
an AI would also help us understand the

principles behind intelligence and, maybe, the
functioning of the human brain. But perhaps
the outcome will be that we end up
understanding neither the brain nor how AI
works!

Suppose we want to detect faces in an image.
How do we approach the problem? We can
attack this problem the same way as we
attacked the handwriting recognition one—
using pixels in an image as input to a neural
network, with the output from the network as
a single neuron indicating either Yes, it's a
face or No, it's not a face.

Let's suppose we do this, but we're not using
a learning algorithm. Instead, we're going to
try to design a network by hand, choosing
appropriate weights and biases. How might
we go about it? Forgetting neural networks
entirely for the moment, a heuristic we could
use is to decompose the problem into sub-
problems: Does the image have an eye in the
top left? Does it have an eye in the top right?
Does it have a nose in the middle? Does it

have a mouth in the bottom middle? Is there
hair on top? And so on.

If the answers to several of these questions
are yes or even probably yes, then we'd
conclude that the image is likely to be a face.
Conversely, if the answers to most of the
questions are no, then the image probably
isn't a face.

Here's a possible architecture, with rectangles
denoting the sub-networks. Note that this isn't
intended as a realistic approach to solving a
face-detection problem. Rather, it's done to
help us build an intuition of how networks
work. Here's the architecture:

Figure 10.17: Deep learning intuition

It's also plausible that the sub-networks can
be decomposed. Suppose we're considering
the question, Is there an eye in the top
left? This can be decomposed into questions
such as:

Is there an eyebrow?
Are there eyelashes?
Is there an iris?
And so on

Of course, these questions should really
include positional information as well—Is the
eyebrow in the top left and above the
iris? that kind of thing— but let's keep it
simple.

These questions too can be broken down
further and further through multiple layers.
Ultimately, we'll be working with sub-
networks that answer questions so simple that
they can easily be answered at the level of
single pixels. Those questions might, for
example, be about the presence or absence of

very simple shapes at particular points in the
image. Such questions can be answered by
single neurons connected to the raw pixels in
the image.

The end result is a network that breaks down
a very complicated question—Does this
image show a face or not?—into very simple
questions answerable at the level of single
pixels. It does this through a series of many
layers, with early layers answering very
simple and specific questions about the input
image, and later layers building up a
hierarchy of ever more complex and abstract
concepts. Networks with this kind of many-
layer structure—of two or more hidden layers
—are called deep neural networks.

Convolutional
Neural Networks
We have worked with fully connected neural
networks (each neuron has a connection with
each neuron of the next and previous layer).
In this section, we will discuss a different
kind of neural network that is pretty useful in
image classification as well as the
segmentation of pixels.

As we have seen earlier, we have to first
reshape our image into a 1D vector and then
feed it into our neural network. Due to this,
we lose the spatial relationship between
pixels. Let’s understand the process of
reshaping we have used earlier with the same
face detection problem we discussed in
previous section.

When we convert a face image into a 1D
vector, this is what happens inside the

function. We pick up each row of the image
matrix and append it in cascade form, as
shown here:

Figure 10.18: 1D data representation of an image

As you can see, in the preceding figure, there
is no positional relationship left between the
different rows of a face image. Due to this,
our final classifier may be less sensitive
towards positional changes. This may become
a problem during a face recognition task
where small structural details are required to
differentiate between two different faces.
What if we can train our images with spatial

context? This is where the concept of CNNs
comes into the picture.

These networks use a special architecture that
is particularly well adapted to classify
images. Using this architecture makes
convolutional networks fast to train. This, in
turn, helps us train deep, many-layer
networks, which are very good at classifying
images.

Today, deep convolutional networks or some
close variants are used in most neural
networks for image recognition.

CNNs use three basic ideas: local receptive
fields, shared weights, and pooling. Let's look
at each of these ideas in turn.

Local receptive fields
In the fully connected layers shown earlier,
the inputs were depicted as a vertical line of
neurons. In a convolutional net,
it'll instead help to think of the inputs as
a 18×18 square of neurons, whose values
correspond to the 18×18 pixel intensities
we're using as inputs:

Figure 10.19: Representation of a digital mage

As usual, we'll connect the input pixels to a
layer of hidden neurons, but we won't connect
every input pixel to every hidden neuron.
Instead, we only make connections in small,
localized regions of the input image.

To be more precise, each neuron in the first
hidden layer will be connected to a small
region of the input neurons, for example,
a 5×5 region corresponding to 25 input
pixels. So, for a particular hidden neuron, we
might have connections that look like this:

Figure 10.20: Local receptive field

Such a region in the input image is called
the local receptive field for the hidden
neuron. It's a little window on the input
pixels. Each connection learns a weight, and
the hidden neuron learns an overall bias as
well. You can think of that hidden neuron as
learning to analyze its particular local
receptive field.

We then slide the local receptive field across
the entire input image. For each local

receptive field, there is a different hidden
neuron in the first hidden layer. To illustrate
this concretely, let's start with a local
receptive field in the top-left corner:

Figure 10.21: Calculation for first hidden neuron

Then we slide the local receptive field over
by one pixel to the right (that is, by one
neuron), to connect to a second hidden
neuron:

Figure 10.22: Calculation for first hidden neuron

We will continue this process of building up
the first hidden layer. Note that if we have
an 18×18 input image and 5×5 local receptive
fields, then there will be 14×14 neurons in the
hidden layer. This is because we can only
move the local receptive field 13 neurons
across (or 13 neurons down), before colliding
with the right-hand side (or bottom) of the
input image.

I've shown the local receptive field being
moved by one pixel at a time. In fact,
sometimes, a different stride length is used.
For instance, we might move the local

receptive field two pixels to the right (or
down), in which case we'd say a stride length
of two is used.

Shared weights and
biases
I've said that each hidden neuron has a bias
and 5×5 weights connected to its local
receptive field. What I did not yet mention is
that we're going to use the same weights and
bias for each of the 14×14 hidden neurons. In
other words, for the (j, k)th hidden neuron,
the output is:

 (10)

Here, σ is the neural activation function,
perhaps the sigmoid function we used in
earlier chapters. b is the shared value for the
bias. wl,m is a 5×5 array of shared weights.
And, finally, we use ax, y to denote the input
activation at position x, y.

This means that all the neurons in the first
hidden layer detect exactly the same feature,
just at different locations in the input image.
To see why this makes sense, suppose the
weights and biases are such that the hidden
neuron can pick out, say, a vertical edge in a
particular local receptive field. This ability is
also likely to be useful at other places in the
image, and so it is useful to apply the same
feature detector everywhere in the image. To
put it in slightly more abstract terms,
convolutional networks are well adapted to
the translation invariance of images: move a
picture of a cat (say) a little sideways and it's
still a picture of a cat.

For this reason, we sometimes call the map
from the input layer to the hidden layer
a feature map. We call the weights defining
the feature map the shared weights, and we
call the bias defining the feature map in this
way the shared bias. Shared weights and bias
are often said to define a kernel or filter.

The network structure I've described so far

can detect just a single kind of localized
feature. To do image recognition, we'll need
more than one feature map. So a complete
convolutional layer consists of several
different feature maps:

Figure 10.23: Feature map representation

In the example shown, there are three feature
maps. Each feature map is defined by a set
of 5×5 shared weights and a single shared
bias. The result is that the network can detect
three different kinds of features, with each
feature being detectable across the entire
image.

I've shown just three feature maps to keep
the preceding diagram simple. However, in
practice, convolutional networks may use
more (and perhaps many more) feature maps.

One of the early convolutional networks,
LeNet-5, used 6 feature maps, each
associated to a 5×5 local receptive field, to
recognize MNIST digits. So the example
illustrated before is actually pretty close to
LeNet-5.

Figure 10.24: Features (Shared Weights) extracted from an
inner layer of hidden convolution layers

The preceding image shows what a learned
feature matrix looks like. Whiter blocks mean
a smaller (typically, more negative) weight,
so the feature map responds less to the
corresponding input pixels. Darker blocks
mean a larger weight, so the feature map
responds more to the corresponding input
pixels. Very roughly speaking, these images
show the type of features the convolutional
layer responds to.

Incidentally, the name convolutional comes
from the fact that the operation in equation
(10) is sometimes known as convolution. A
little more precisely, people sometimes write
that equation as a1=σ(b+w∗a0),
where a1 denotes the set of output activations
from one feature map, a0 is the set of input
activations, and ∗ is called a convolution
operation. We're not going to make any deep
use of the mathematics of convolutions, so
you don't need to worry too much about this
connection. But it's at least worth knowing
where the name comes from.

Pooling layers
In addition to the convolutional layers just
described, CNNs also contain pooling layers.
Pooling layers are usually used immediately
after convolutional layers. What they do is
simplify the information in the output from
the convolutional layer.

In detail, a pooling layer takes each feature
map output from the convolutional layer and
prepares a condensed feature map. For
instance, each unit in the pooling layer may
summarize a region of (say) 2×2 neurons in
the previous layer. As a concrete example,
one common procedure for pooling is known
as max-pooling. In max-pooling, a pooling
unit simply outputs the maximum activation
in the 2×2 input region, as illustrated in the
following diagram:

Figure 10.25: Pooling layer

Note that since we have 14×14 neurons of
output from the convolutional layer, after
pooling, we have 7×7 neurons.

As mentioned before, the convolutional layer
usually involves more than a single feature
map. We apply max-pooling to each feature
map separately. So, if there were three feature
maps, the combined convolutional and max-
pooling layers would look like:

Figure 10.26: Max pooling on convolutional output

We can think of max-pooling as a way for the
network to ask whether a given feature is
found anywhere in a region of the image. It
then throws away the exact positional
information. The intuition is that once a
feature has been found, its exact location isn't
as important as its rough location relative to
other features. A big benefit is that there are
many fewer-pooled features, and so this helps
reduce the number of parameters needed in
later layers.

Max-pooling isn't the only technique used for
pooling. Another common approach is known
as L2 pooling. Here, instead of taking the
maximum activation of a 2×2 region of

neurons, we take the square root of the sum
of squares of activations in the 2×2 region.
While the details are different, the intuition is
similar to max-pooling. L2 pooling is a way
of condensing information from the
convolutional layer. In practice, both
techniques have been widely used.
Sometimes, people use other types of pooling
operations. If you're really trying to optimize
performance, you may use validation data to
compare several different approaches to
pooling and choose the approach that works
best. However, we're not going to worry
about that kind of detailed optimization.

Combining all the
layers
If we consider our older problem of MNIST
digits classification, we can create a
convolutional neural network by putting
layers as described in the previous paragraph;
we just need to add an output layer with 10
neurons (as we are expecting 10 classes at the
output).

The network begins with 28×28 input
neurons, which are used to encode the pixel
intensities for the MNIST image. This is then
followed by a convolutional layer using
a 5×5 local receptive field and three feature
maps.

The result is a layer of 3×24×24 hidden
feature neurons. The next step is a max-
pooling layer applied to 2×2 regions across
each of the three feature maps.

The result is a layer of 3×12×12 hidden
feature neurons:

Figure 10.27: Putting it all together

The final layer of connections in the network
is a fully connected layer. That is, this layer
connects every neuron from the max-pooled
layer to every one of the 1,010 output
neurons. This fully connected architecture is
the same as what we used in earlier chapters.
Note, however, that in this diagram, I've used
a single arrow for simplicity instead of
showing all the connections. Of course, you
can easily imagine the connections.

Implementation of
CNN in Python
We have seen how we can design a CNN
model. As we have discussed earlier, CNN
architecture contains more than one set of
convolutional and max-pooling layers along
with activation functions.

Here, we will deal with the same MNIST
digit classification problem to understand the
working of a CNN. This problem is known as
the Hello World! program of the deep
learning domain. This model is adapted from
Yann Lecunn's LeNet model, so we will also
name our CNN architecture as LeNet.

We will create a convolutional architecture
with two sets of convolutional-relu-max
pooling and one dense layer for classification
of extracted feature maps.

Let's create a definition for constructing our
CNN:

#Here is our Network definition

def LeNet(width, height, depth, classes,

weightsPath=None):

 #Initialize model

 model = Sequential()

 #First set of Convolution ==>

Activation(ReLu) ==> pooling(Max Pooling)

model.add(Convolution2D(20,5,5,border_mode='the

same',input_shape

(depth,height,width)))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=

(2,2),strides=(2,2)))

 #Second set of Convolution ==>

Activation(ReLu) ==> pooling(Max Pooling)

model.add(Convolution2D(50,5,5,border_mode="the

same"))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=

(2,2),strides=(2,2)))

 #Fully connected Layer FC ==> ReLu

 model.add(Flatten())

 model.add(Dense(500))

 model.add(Activation("relu"))

 model.add(Dense(classes))

 model.add(Activation("softmax"))

 # If a pre-trained model is supplied

 if weightsPath is not None:

 model.load_weights(weightsPath)

 #return the constructed model

 return model

The architecture of the preceding model looks
something like:

Figure 10.28: Architecture of a multilayered CNN

Now we will start building the module by
importing all the packages. This code is
exactly similar to the code we have used to
create a simple neural network. The entire
code is self-explanatory, so I don't think there
is any need for further explanation:

Imports for array-handling and plotting

from keras import callbacks

from keras.datasets import mnist

from keras.models import load_model

from keras.utils import np_utils

from Codes.Networks.LeNet import LeNet

import matplotlib.pyplot as plt

import numpy as np

from keras.utils.visualize_util import plot

Keras imports for the data set and building

our neural network

#Let's Start by loading our data set

(X_train, y_train), (X_test, y_test) =

mnist.load_data()

X_train = X_train.reshape(X_train.shape[0], 1,

28, 28).astype('float32')

X_test = X_test.reshape(X_test.shape[0], 1, 28,

28).astype('float32')

Print the shape before we reshape and

normalize

print("X_train shape", X_train.shape)

print("y_train shape", y_train.shape)

print("X_test shape", X_test.shape)

print("y_test shape", y_test.shape)

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

Normalizing the data to between 0 and 1 to

help with the training

X_train /= 255

X_test /= 255

Print the final input shape ready for

training

print("Train matrix shape", X_train.shape)

print("Test matrix shape", X_test.shape)

#One-hot encoding using keras' numpy-related

utilities

n_classes = 10

print("Shape before one-hot encoding: ",

y_train.shape)

Y_train = np_utils.to_categorical(y_train,

n_classes)

Y_test = np_utils.to_categorical(y_test,

n_classes)

print("Shape after one-hot encoding: ",

Y_train.shape)

As we know, here our data shape will not be
a 1D vector:

X_train shape (60000, 1, 28, 28)

y_train shape (60000,)

X_test shape (10000, 1, 28, 28)

y_test shape (10000,)

Train matrix shape (60000, 1, 28, 28)

Test matrix shape (10000, 1, 28, 28)

Shape after one-hot encoding: (60000, 10)

#Import necessary packages for building our CNN

from keras.models import Sequential

#We will Need convolutional layer for feature

maps and max pooling layers

from keras.layers.convolutional import

Convolution2D,MaxPooling2D

#Flatten layer will convert 2D image into 1D

array for last layer computations

from keras.layers.core import

Activation,Flatten,Dense

#Here is our Network definition

def LeNet(width, height, depth, classes,

weightsPath=None):

 #Initialize model

 model = Sequential()

 #First set of Convolution ==>

Activation(ReLu) ==> pooling(Max Pooling)

model.add(Convolution2D(20,5,5,border_mode='the

same',input_shape

(depth,height,width)))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=

(2,2),strides=(2,2)))

 #Second set of Convolution ==>

Activation(ReLu) ==> pooling(Max Pooling)

model.add(Convolution2D(50,5,5,border_mode="the

same"))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=

(2,2),strides=(2,2)))

 #Fully connected Layer FC ==> ReLu

 model.add(Flatten())

 model.add(Dense(500))

 model.add(Activation("relu"))

 model.add(Dense(classes))

 model.add(Activation("softmax"))

 # If a pre-trained model is supplied

 if weightsPath is not None:

 model.load_weights(weightsPath)

 #return the constructed model

 return model

#Define Path to model Storage

path2save =

'E:/PyDevWorkSpaceTest/Ensembles/Chapter_10/keras_mnist_lenet.h5'

#Call our model structure

model = LeNet(28, 28, 1, 10)

plot(model,show_shapes=True,show_layer_names=True,to_file='E:/PyDevWorkSpaceTest

Ensembles/Chapter_10/keras_mnist_lenet.pdf')

#We will only store the best model with highest

validation accuracy

modelCheck =

callbacks.ModelCheckpoint(path2save,

monitor='val_acc', verbose=0,

save_best_only=True, save_weights_only=False,

mode='auto')

#Optimizer will be adaptive momentum with

categorical loss

model.compile(optimizer="Adam", loss =

"categorical_crossentropy",metrics=

["accuracy"])

Start training the model and saving metrics

in history

history = model.fit(X_train, Y_train,

 batch_size=128, epochs=20,

 verbose=2,

 validation_data=(X_test, Y_test),

 callbacks= [modelCheck])

Saving the model on disk

model.save(path2save)

print('Saved trained model at %s ' % path2save)

Plotting the metrics

fig = plt.figure()

plt.subplot(2,1,1)

plt.plot(history.history['acc'])

plt.plot(history.history['val_acc'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='lower

right')

plt.subplot(2,1,2)

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper

right')

plt.tight_layout()

plt.show()

Figure 10.29: CNN model performance during the training
phase

#Let's load the model for testing data

path2save =

'E:/PyDevWorkSpaceTest/Ensembles/Chapter_10/keras_mnist_lenet.h5'

mnist_model = load_model(path2save)

#We will use Evaluate function

loss_and_metrics = mnist_model.evaluate(X_test,

Y_test, verbose=2)

print("Test Loss", loss_and_metrics[0])

print("Test Accuracy", loss_and_metrics[1])

Test Loss 0.0315236214503

Test Accuracy 0.9935

#Load the model and create predictions on the

test set

mnist_model = load_model(path2save)

predicted_classes =

mnist_model.predict_classes(X_test)

#See which we predicted correctly and which not

correct_indices = np.nonzero(predicted_classes

== y_test)[0]

incorrect_indices =

np.nonzero(predicted_classes != y_test)[0]

print(len(correct_indices)," classified

correctly")

print(len(incorrect_indices)," classified

incorrectly")

9935 classified correctly

65 classified incorrectly

#Adapt figure size to accomodate 18 subplots

plt.rcParams['figure.figsize'] = (7,14)

plt.figure()

plot 9 correct predictions

for i, correct in

enumerate(correct_indices[:9]):

 plt.subplot(6,3,i+1)

 plt.imshow(X_test[correct].reshape(28,28),

cmap='gray', interpolation='none')

 plt.title(

 "Predicted: {}, Truth:

{}".format(predicted_classes[correct],

y_test[correct]))

 plt.xticks([])

 plt.yticks([])

plot 9 incorrect predictions

for i, incorrect in

enumerate(incorrect_indices[:9]):

 plt.subplot(6,3,i+10)

plt.imshow(X_test[incorrect].reshape(28,28),

cmap='gray',

interpolation='none')

 plt.title(

 "Predicted {}, Truth:

{}".format(predicted_classes[incorrect],

y_test[incorrect]))

 plt.xticks([])

 plt.yticks([])

plt.show()

Figure 10.30: CNN model output on test data

If you notice, our classifier fails in very close
cases. There are chances that a human can

fail in those cases, too. If we summarize the
comparative performance for a normal NN
and a CNN, we can write down the following
for our example:

Parameters Neural
Nets

Conv
Nets

Input data
shape 1D vector 2D vector

Test loss 0.082 0.031

Test accuracy 98.13 99.35%

Correct
instances 9813 9935

Table 10.1: Comparison of two networks

The preceding performance summary shows
the clear victory of CNNs over normal feed-
forward networks. We can see here that the
correct instances for CNN are more in
number than a for normal network.

Recurrent Neural
Networks
I think every one of you has a smartphone,
and you may be using many text-message-
based services to text your loved ones.
Whenever you type a word, you get a
suggestion for the next word, and at least
75% of the time the prediction is correct.
How can it be done? How does your
smartphone know what the next word should
be? Well, there is a predictive algorithm
behind that and its work is to predict the next
word using the previous word as input so that
a meaningful sentence can be created. The
technology is known as word embedding. We
will try to implement such a kind of word
prediction module with the use of Recurrent
Neural Networks (RNNs).

 RNNs are designed to use sequential
information. In a traditional neural network,

we assume that all inputs (and outputs) are
independent of each other. But for many
tasks, this is not true. If you want to predict
the next word in a sentence, you better know
which words came before it. RNNs are
called recurrent because they perform the
same task for every element of a sequence,
with the output being dependent on the
previous computations.

Another way to think about RNNs is that they
have a memory that captures information
about what has been calculated so far. In
theory, RNNs can make use of information
in arbitrarily long sequences, but in practice,
they are limited to looking back only a few
steps. Here is what a typical RNN looks like:

Figure 10.31: Recurrent Neural Network

In the preceding diagram, Xt is an input word
or a character. ht is the predicted output for
that word and A is the neural units
responsible for this prediction. Here you can
see a loop at work, it emerges from A and the
feedback goes to A. We will talk about this in
a few moments. I have told earlier that a
RNN is used to utilize sequential information.
If we elaborate the neural units in the
preceding figure, they will look something
like:

Figure 10.32: Unrolled Recurrent neural network

As you can see, each neural unit takes an
input X and gives an output h, while also
passing the information to the next unit. This
is the important part of the RNN; here each
unit shares its information with other
neurons, which helps to use sequential
information such as word or character
prediction tasks.

Let’s understand the structure of RNN and its
working.

How RNN works
(unrolling RNN)
RNN are a type of neural network where
outputs from previous time steps are taken as
inputs for the current time step.

We can demonstrate this with a picture.

Here, we can see that the network takes the
output of the network from the previous time
step as input and uses the internal state from
the previous time step as a starting point for
the current time step:

Figure 10.33: RNN unit

RNNs are fit for making predictions over
many time steps. We can simplify the model
by unfolding or unrolling the RNN graph
over the input sequence.

Unrolling the
forward pass
Consider the case where we have multiple
time steps of input (X(t), X(t+1), …), multiple
time steps of internal state (u(t), u(t+1), …),
and multiple time steps of output (y(t),
y(t+1), …).

We can unfold the preceding network
schematic into a graph without any cycles.

Figure 10.34: Forward pass in RNN

We can see that the cycle is removed and that
the output (Y(t)) and internal state (U(t))
from the previous time step are passed on to
the network as inputs for processing the next
time step.

The key in this conceptualization is that the
network (RNN) does not change between the
unfolded time steps. Specifically, the same

weights are used for each time step and it is
only the outputs and the internal states that
differ.

In this way, it is as though the whole network
(topology and weights) is copied for each
time step in the input sequence.

Further, each copy of the network may be
thought of as an additional layer of the same
feed-forward neural network.

Figure 10.35: Multiple RNN units in cascade (deep RNN)

This is a useful conceptual tool and
visualization to help in understanding what is
going on in the network during the forward
pass. Also, it may or may not be the way the
network is implemented by the deep learning
library.

Unrolling the
backward pass
The idea of network unfolding plays a bigger
part in the way RNNs are implemented for
backward pass.

Importantly, the backpropagation of an error
for a given time step depends on the
activation of the network at the prior time
step. In this way, backward pass requires the
conceptualization of unfolding the network.

The error is propagated back to the first input
time step of the sequence so that the error
gradient can be calculated and the weights of
the network can be updated.

Like standard backpropagation,
[backpropagation through time]
consists of a repeated
application of the chain rule.

The subtlety is that, for
recurrent networks, the loss
function depends on the
activation of the hidden layer,
not only through its influence on
the output layer but also
through its influence on the
hidden layer at the next time
step.

Unfolding the recurrent network graph also
introduces additional concerns. Each time
step requires a new copy of the network,
which in turn takes up memory, especially for
larger networks with thousands or millions of
weights, the memory requirements of training
large recurrent networks can quickly balloon
as the number of time steps climbs to the
hundreds.

It is required to unroll the RNNs
by the length of the input
sequence. By unrolling an RNN
N times, every activation of the
neurons inside the network is

replicated N times, which
consumes a huge amount of
memory, especially when the
sequence is very long. This
hinders a small footprint
implementation of online
learning or adaptation. Also,
this full unrolling makes
parallel training with multiple
sequences inefficient on shared
memory models such as
graphics processing units
(GPUs).

Backpropagation
Through Time
Backpropagation Through Time (BPTT),
is the training algorithm used to update
weights in RNNs such as LSTMs.

To effectively frame sequence prediction
problems for RNNs, you must have a strong
conceptual understanding of what BPTT is
doing and how configurable variations such
as Truncated BPTT will affect skill, stability,
and speed when training your network.

Backpropagation
training algorithm
Backpropagation refers to two things:

The mathematical method used to
calculate derivatives and an application
of the derivative chain rule
The training algorithm for updating
network weights to minimize error

It is this latter understanding of
backpropagation that we are using here.

The goal of the backpropagation training
algorithm is to modify the weights of a neural
network in order to minimize the error of the
network outputs compared to some expected
output in response to the corresponding
inputs.

It is a supervised learning algorithm that

allows the network to be corrected with
regard to the specific errors made.

The general algorithm is as follows:

1. Present a training input pattern and
propagate it through the network to get
an output.

2. Compare the predicted outputs to the
expected outputs and calculate the error.

3. Calculate the derivatives of the error
with respect to the network weights.

4. Adjust the weights to minimize the
error.

5. Repeat.

The backpropagation training algorithm is
suitable for training feed-forward neural
networks on fixed-sized input-output pairs,
but what about sequence data that may be
temporally ordered?

Backpropagation
Through Time
BPTT, is the application of the
backpropagation training algorithm to a
recurrent neural network applied to sequence
data, such as a time series.

A RNN is shown with one input each time
step and predicts one output.

Conceptually, BPTT works by unrolling all
input time steps. Each time step has one input
time step, one copy of the network, and one
output. Errors are then calculated and
accumulated for each time step. The network
is rolled back up and the weights are updated.

Spatially, each time step of the unrolled
RNN may be seen as an additional layer,
given the order dependence of the problem,
and the internal state from the previous time

step is taken as an input on the subsequent
time step.

We can summarize the algorithm as follows:

1. Present a sequence of time steps of input
and output pairs to the network.

2. Unroll the network. Then calculate and
accumulate errors across each time step.

3. Roll up the network and update the
weights.

4. Repeat.

BPTT can be computationally expensive as
the number of time steps increases.

If the input sequences are comprised of
thousands of time steps, then this will be the
number of derivatives required for a single
update weight update. This can cause the
weights to vanish or explode (go to zero or
overflow) which can make slow learning and
model skill may be noisy.

Long Short-Term
Memory networks
Long Short Term Memory (LSTM)
networks—usually just called LSTMs—are a
special kind of RNNs that are capable of
learning long-term dependencies. They were
introduced by Hochreiter and Schmidhuber
(1997). They work tremendously well on a
large variety of problems and are now widely
used.

LSTMs are explicitly designed to avoid the
long-term dependency problem.
Remembering information for long periods of
time is practically their default behavior, not
something they struggle to learn!

All RNNs are in the form of a chain of
repeating modules of neural network. In
standard RNNs, this repeating module will
have a very simple structure, such as a single

tanh layer:

Figure 10.36: The repeating module in a standard RNN
contains a single layer

LSTMs also have this chain-like structure,
but the repeating module has a different
structure. Instead of having a single neural
network layer, there are four, interacting in a
very special way:

Figure 10.37: The repeating module in an LSTM contains
four interacting layers

Don't worry about the details of what's going
on. We'll walk through the LSTM diagram
step by step later. For now, let's just try to get
comfortable with the notation we'll be using:

Figure 10.38: Notations

In the preceding diagram, each line carries an
entire vector, from the output of one node to
the inputs of others. The pink circles

represent point-wise operations, such as
vector addition, while the yellow boxes are
the learned neural network layers. Lines
merging denote concatenation, while a line
forking denotes that its content is being
copied and the copies are going to different
locations.

The idea behind
LSTMs
The key to LSTMs is the cell state, the
horizontal line running through the top of the
diagram.

The cell state is, kind of, like a conveyor belt.
It runs straight down the entire chain, with
only some minor linear interactions. It's very
easy for information to just flow along it
unchanged:

Figure 10.39: Forward pass

The LSTM does have the ability to remove or
add information to the cell state, carefully
regulated by structures called gates.

Gates are a way to optionally let information
through. They are composed of a sigmoid
neural net layer and a point-wise
multiplication operation:

Figure 10.40: Sigmoid neuron activation

The sigmoid layer outputs numbers between
zero and one, describing how much of each
component should be let through. A value of
0 means let nothing through while a value of
1means let everything through!

An LSTM has three of these gates to protect

and control the cell state.

Step-by-step LSTM
walkthrough
The first step in our LSTM is to decide what
information we're going to throw away from
the cell state. This decision is made by a
sigmoid layer called the forget gate layer. It
looks at ht−1 and xt and outputs a number
between zero and one for each number in the
cell state Ct−1. A one represents completely
keep this while a zero represents completely
get rid of this.

Let's go back to our example of a language
model trying to predict the next word based
on all the previous ones. In such a problem,
the cell state might include the gender of the
present subject so that the correct pronouns
can be used. When we see a new subject, we
want to forget the gender of the old subject:

Figure 10.41: Calculation of a neuron's output

The next step is to decide what new
information we're going to store in the cell
state. This has two parts. First, a sigmoid
layer called the input gate layer decides
which values we'll update. Next, a tanh layer
creates a vector of new candidate values, C~t,
that could be added to the state. In the next
step, we'll combine these two to create an
update to the state.

In the example of our language model, we'd
want to add the gender of the new subject to
the cell state to replace the old one we're
forgetting:

Figure 10.42: Decision on which value to update

It's now time to update the old cell state, Ct−1,
into the new cell state Ct. The previous steps
already decided what to do; we just need to
actually do it.

We multiply the old state by ft, forgetting the
things we decided to forget earlier. Then, we
add it ∗C~t. This represents the new
candidate values, scaled by how much we
decided to update each state value.

In the case of the language model, this is
where we'd actually drop the information
about the old subject's gender and add the
new information as we decided in the
previous steps.

Figure 10.43: Update older values using new information

Finally, we need to decide what we're going
to output. This output will be based on our
cell state but will be a filtered version. First,
we run a sigmoid layer that decides what
parts of the cell state we’re going to output.
Then, we put the cell state through tanh (to
push the values to be between −1 and 1) and
multiply it by the output of the sigmoid gate
so that we only output the parts we decided
to.

For the language model example, since it just
saw a subject, it might want to output
information relevant to a verb, just in case
that's what is coming next. For example, it
might output whether the subject is singular

or plural so that we know what form a verb
should be conjugated into if that's what
follows next:

Figure 10.44: Decision of the output value

So this is how an LSTM network works. In
the next section, we will implement an LSTM
network using Keras and TensorFlow in
Python.

Text generation
using LSTM
RNNs can also be used as generative models.
This means that in addition to being used for
predictive models (making predictions), they
can learn the sequences of a problem and then
generate entirely new plausible sequences for
the problem domain.

Generative models like this are useful not
only to study how well a model has learned a
problem, but also to learn more about the
problem domain itself.

In this section, we will discover how to create
a generative model for text, character by
character and using LSTM RNNs in Python
with Keras.

Problem
description – project
Gutenberg
Many classical texts are no longer
protected under copyright.

This means that you can download all of the
text for these books for free and use them in
experiments, such as creating generative
models. Perhaps the best place to get access
to free books that are no longer protected by
copyright is https://www.gutenberg.org/.

In this tutorial, we are going to use everyone's
favorite book from childhood as the dataset
Alice's Adventures in Wonderland by Lewis
Carroll.

We are going to learn the dependencies
between characters and the conditional

https://www.gutenberg.org/

probabilities of the characters in sequences so
that we can, in turn, generate wholly new and
original sequences of characters.

This is a lot of fun and I recommend
repeating these experiments with other books
from project Gutenberg; https://www.gutenberg.org/
ebooks/search/%3Fsort_order%3Ddownloads.

These experiments are not limited to text; you
can also experiment with other ASCII data,
such as computer source code, marked up
documents in LaTeX, HTML or Markdown,
and more.

You can http://www.gutenberg.org/cache/epub/11/pg11.tx
t (Plaintext UTF-8) for this book for free and
place it in your working directory with the
filename wonderland.txt.

Now we need to prepare the dataset for
modeling.

Project Gutenberg adds a standard header and
footer to each book and this is not part of the

https://www.gutenberg.org/ebooks/search/%3Fsort_order%3Ddownloads
http://www.gutenberg.org/cache/epub/11/pg11.txt

original text. Open the file in a text editor and
delete the header and footer.

The header is obvious and ends with the text:

*** START OF THIS PROJECT GUTENBERG EBOOK

ALICE'S ADVENTURES IN WONDERLAND ***

The footer is all of the text after the line of
text that says:

THE END

You should be left with a text file that has
about 3,330 lines of text.

LSTM model
In this section, we will develop a simple
LSTM network to learn sequences of
characters from Alice in Wonderland. In the
next section, we will use this model to
generate new sequences of characters:

#Let’s start off by importing the classes and

functions we intend to use to train our model.

import numpy

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint

from keras.utils import np_utils

Next, we need to load the ASCII text for the
book into memory and convert all the
characters to lowercase to reduce the
vocabulary that the network must learn:

load ascii text and covert to lowercase

filename = "wonderland.txt"

raw_text = open(filename).read()

raw_text = raw_text.lower()

Now that the book is loaded, we must prepare
the data for modeling by the neural network.
We cannot model the characters directly;
instead we must convert the characters into
integers.

We can do this easily by first creating a set of
all the distinct characters in the book and then
creating a map of each character to a unique
integer:

create mapping of unique chars to integers

chars = sorted(list(set(raw_text)))

char_to_int = dict((c, i) for i, c in

enumerate(chars))

For example, the list of unique sorted
lowercase characters in the book is as
follows:

['\n', '\r', ' ', '!', '"', "'", '(', ')', '*',

',', '-', '.', ':', ';', '?', '[', ']', '_',

'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',

'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',

's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\xbb',

'\xbf', '\xef']

You can see that there may be some
characters that we could remove to further
clean up the dataset and which will reduce the

vocabulary, possibly improving the modeling
process.

Now that the book has been loaded and the
mapping prepared, we can summarize the
dataset:

n_chars = len(raw_text)

n_vocab = len(chars)

print ("Total Characters: ", n_chars)

print ("Total Vocab: ", n_vocab)

Running the code at this point produces the
following output:

Total Characters: 147674

Total Vocab: 47

We can see that the book has just under
150,000 characters, and when converted to
lowercase, there are only 47 distinct
characters in the vocabulary for the network
to learn. Much more than the 26 in the
alphabet!

We now need to define the training data for
the network. There is a lot of flexibility in
how you choose to break up the text and

expose it to the network during training.

In this tutorial, we will split the book text into
subsequences with a fixed length of 100
characters, an arbitrary length. We can just as
easily split the data by sentences, pad the
shorter sequences, and truncate the longer
ones.

Each training pattern of the network is
comprised of 100 time steps of one character
input (X) followed by one character output
(y). When creating these sequences, we slide
this window along the whole book one
character at a time, allowing each character a
chance to be learned from the 100 characters
that preceded it (except the first 100
characters, of course).

For example, if the sequence length is 5 (for
simplicity), then the first two training patterns
would be as follows:

CHAPT -> E

HAPTE -> R

As we split the book into these sequences, we
convert the characters to integers using our
lookup table prepared earlier:

prepare the dataset of input to output pairs

encoded as integers

seq_length = 100

dataX = []

dataY = []

for i in range(0, n_chars - seq_length, 1):

 seq_in = raw_text[i:i + seq_length]

 seq_out = raw_text[i + seq_length]

 dataX.append([char_to_int[char] for char

in seq_in])

 dataY.append(char_to_int[seq_out])

n_patterns = len(dataX)

print ("Total Patterns: ", n_patterns)

Running the code at this point shows us that
when we split up the dataset into training data
for the network to learn, we have just under
150,000 training patterns. This makes sense
as, excluding the first 100 characters, we have
one training pattern to predict each of the
remaining characters:

Total Patterns: 147574

Now that we have prepared our training data,
we need to transform it so that it is suitable
for use with Keras.

First, we must transform the list of input
sequences into the form [samples, time steps,
features] expected by an LSTM network.

Next, we need to rescale the integers to the
range of zero to one to make the patterns
easier to learn by the LSTM network; it uses
the sigmoid activation function by default.

Finally, we need to convert the output
patterns (single characters converted to
integers) into a one-hot encoding. This is
done so that we can configure the network to
predict the probability of each of the 47
different characters in the vocabulary (an
easier representation) rather than trying to
force it to predict precisely the next character.
Each y value is converted into a sparse vector
with a length of 47, full of zeros except with
a one in the column for the letter (integer)
that the pattern represents.

For example, when n (integer value 31) is
one-hot encoded, it looks as follows:

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.]

We can implement these steps as follows:

reshape X to be [samples, time steps,

features]

X = numpy.reshape(dataX, (n_patterns,

seq_length, 1))

normalize

X = X / float(n_vocab)

one hot encode the output variable

y = np_utils.to_categorical(dataY)

We can now define our LSTM model. Here, we
define two hidden LSTM layers with 256
memory units. The network uses Dropout with
a probability of 20 with both the layers. The
output layer is a Dense layer using the softmax
activation function to output a probability
prediction for each of the 47 characters
between zero and one.

The problem is really a single-character
classification problem with 47 classes, and as
such, it is defined as optimizing the loss log
(cross entropy), here using the adam

optimization algorithm for speed:

define the LSTM model

model = Sequential()

model.add(LSTM(256, input_shape=(X.shape[1],

X.shape[2]), return_sequences=True))

model.add(Dropout(0.2))

model.add(LSTM(256))

model.add(Dropout(0.2))

model.add(Dense(y.shape[1],

activation='softmax'))

model.compile(loss='categorical_crossentropy',

optimizer='adam')

There is no test dataset. We are modeling the
entire training dataset to learn the probability
of each character in a sequence.

We are not interested in the most accurate
(classification accuracy) model of the training
dataset. This would be a model that predicts
each character in the training dataset
perfectly. Instead, we are interested in a
generalization of the dataset that
minimizes the chosen loss function. We are
seeking a balance between generalization and
overfitting but short of memorization:

define the checkpoint

filepath="weights-improvement-{epoch:02d}-

{loss:.4f}.hdf5"

checkpoint = ModelCheckpoint(filepath,

monitor='loss', verbose=1,

save_best_only=True, mode='min')

callbacks_list = [checkpoint]

We can now fit our model to the data. Here,
we use a modest number of 50 epochs and a
large batch size of 64 patterns:

model.fit(X, y, epochs=50, batch_size=6,

callbacks=callbacks_list)

You will see different results because of the
stochastic nature of the model, and because it
is hard to fix the random seed for LSTM
models to get 100% reproducible results. This
is not a concern for this generative model.

After running the example, you should have a
number of weight checkpoint files in the local
directory.

Generating text with
an LSTM Network
Generating text using the trained LSTM
network is relatively straightforward.

Firstly, we load the data and define the
network in exactly the same way, except the
network weights are loaded from a
checkpoint file and the network does not need
to be trained:

load the network weights

filename = "weights-improvement-19-1.9435.hdf5"

model.load_weights(filename)

model.compile(loss='categorical_crossentropy',

optimizer='adam')

Also, when preparing the mapping of unique
characters to integers, we must create a
reverse mapping that we can use to convert
the integers back to characters so that we can
understand the predictions:

int_to_char = dict((i, c) for i, c in

enumerate(chars))

Finally, we need to actually make predictions.

The simplest way to use the Keras LSTM
model to make predictions is to first start off
with a seed sequence as input, generate the
next character, then update the seed sequence
to add the generated character on the end, and
trim off the first character. This process is
repeated as long as we want to predict new
characters (for example, a sequence of 1,000
characters in length).

We can pick a random input pattern as our
seed sequence and then print generated
characters as we generate them:

pick a random seed

start = numpy.random.randint(0, len(dataX)-1)

pattern = dataX[start]

print("Seed:")

print ("\"", ''.join([int_to_char[value] for

value in pattern]), "\"")

generate characters

for i in range(1000):

 x = numpy.reshape(pattern, (1,

len(pattern), 1))

 x = x / float(n_vocab)

 prediction = model.predict(x, verbose=0)

 index = numpy.argmax(prediction)

 result = int_to_char[index]

 seq_in = [int_to_char[value] for value in

pattern]

 sys.stdout.write(result)

 pattern.append(index)

 pattern = pattern[1:len(pattern)]

print ("\nDone.")

Running this example first outputs the
selected random seed and then each character
as it is generated.

For example, these are the results from one
run of this text generator. The random seed
was:

d herself lying on the bank, with her

head in the lap of her sister, who was gently

brushing away s

The generated text with the random seed
(cleaned up for presentation) was:

herself lying on the bank, with her

head in the lap of her sister, who was gently

brushing away

so siee, and she sabbit said to herself and the

sabbit said to herself and the sood

way of the was a little that she was a little

lad good to the garden,

and the sood of the mock turtle said to

herself, 'it was a little that

the mock turtle said to see it said to sea it

said to sea it say it

the marge hard sat hn a little that she was so

sereated to herself, and

she sabbit said to herself, 'it was a little

little shated of the sooe

of the coomouse it was a little lad good to the

little gooder head. and

said to herself, 'it was a little little shated

of the mouse of the

good of the courte, and it was a little little

shated in a little that

the was a little little shated of the thmee

said to see it was a little

book of the was a little that she was so

sereated to hare a little the

began sitee of the was of the was a little that

she was so seally and

the sabbit was a little lad good to the little

gooder head of the gadseared to see it was a

little lad good to the little good

We can see that generally there are fewer
spelling mistakes and the text looks more
realistic, but it is still quite nonsensical.

For example, the same phrases get repeated
again and again like said to herself and
little. Quotes are opened but not closed.

These are better results, but there is still a lot
of room for improvement.

Summary
So, we have learned a lot of modern day
machine learning stuff in this chapter. We
started with a simple definition of ANNs. We
saw how we can adapt the single-perceptron-
based model for creating a feed-forward
neural network, the theory behind weight
updates through backpropagation, and SGD
algorithm. Then, we implanted a network for
digit recognition from the MNIST dataset.

After successful implementation of ANN, we
stepped towards a more powerful form of
neural networks, which show very impressive
performance, mainly on visual recognition
tasks. We saw how CNNs work and why they
have an edge over normal NNs. Afterwards,
we implemented a CNN for the same digit
recognition problem we had attempted with
ANN. We noticed a tremendous performance
improvement in the case of CNNs.

Then, we turned our learning train towards
networks used in the natural language
processing domain. We covered the
motivation behind RNN and how forward and
backward pass works in RNN. Then, we saw
a very popular and successful type of RNN:
LSTM networks. These networks are widely
used in text generation tasks. We saw a
detailed description of how these networks
work. After completing the theoretical part,
we implemented a small RNN for a text
generation task, and we learned how LSTMs
can be used for text generation. Although the
performance of our network was not up to the
mark, if we can go for more deeper LSTMs,
maybe we can get a better performance.

In the end, as always, keep trying to scroll
through online resources regarding the
technology. Try to implement your
algorithms for practical datasets that are
easily available on the Internet, because
practice is always the key to success.

All the best!!

Troubleshooting
Ensembling is a technique of combining two
or more similar or dissimilar machine
learning algorithms to create a model that
delivers superior prediction power. This book
will show you how you can use many weak
algorithms to make a strong, predictive
model. It contains Python code for different
machine learning algorithms so that you can
easily understand and implement it in your
own systems.

In the appendix section, the author prefers to
mention detailed code of a few chapters so
that you don't struggle while implementing
the code.

The following is the code for Chapter 2,
Decision Trees.

Full code of the
implemented
algorithm ID3

import numpy as np

import pandas as pd

#Function to get Information Gain of the

attribute using class entropy

def getInformationGain(subtable,classEntropy):

 #Initialize a variable for storing

probability of Classes

 fraction = 0

 #Calculate total number of instances

 denom = np.sum(np.sum(subtable))

 #Initialize variable for storing total

entropies of attrribute values

 EntropyAtt = 0

 #Now we will run a loop to access each

attribute and its information gain

 for key in subtable.keys():

 #Extract Attribute

 attribute = subtable[key]

 entropy = 0 #Initialize variable for

entropy calculation

 coeff = 0 #Initialize variable to

store coefficient

 #Find out sum of class attributes(in

our case Yes and No)

 denom2 = np.sum(attribute)

 #Run a loop to get entropy of distinct

values of attribute

 for value in attribute:

 #Calculate coeff

 coeff+= float(value)/denom

 #Calculate probability of the

attribute value

 fraction = float(value)/denom2

 #Calculate Entropy

 eps = np.finfo(float).eps

 entropy+= -

fraction*np.log2(fraction+eps)

 EntropyAtt+= coeff*entropy

 #Calculate Information Gain using class

entropy

 InfGain = classEntropy - EntropyAtt

 return InfGain,EntropyAtt

#Function to get class entropy

def getClassEntropy(classAttributes):

 #Get distinct classes and how many time

they occure

 _,counts =

np.unique(classAttributes,return_counts=True)

 denom = len(classAttributes)

 entropy = 0 #Initialize entropy variable

 #Run a loop to calculate entropy of dataset

 for count in counts:

 fraction = float(count)/denom

 entropy+= -fraction*np.log2(fraction)

 return entropy

#Function to get class occurence table

def getHistTable(df,attribute):

 #This function create a subtable for the

given attribute

 #Get values for the attribute

 value = df[attribute]

 #Extract class

 classes = df['Class']

 #Get distinct classes

 classunique = df['Class'].unique()

 #Get distinct values from attribute for

example, Low, High and Med for Salary

 valunique = df[attribute].unique()

 #Create an empty table to store attribute

value and their respective class occurance

 temp =

np.zeros((len(classunique),len(valunique)),dtype='uint8')

 subtable =

pd.DataFrame(temp,index=classunique,columns=valunique)

 #Calculate class occurance for each value

for Med salary how many time class

attribute is Yes

 for i in range(len(classes)):

 subtable[value[i]][classes[i]]+= 1

 return subtable

#Function to get new node

def getNode(df):

 #This function is written for getting

winner attribute to assign node

 #Get Classes

 classAttributes = df['Class']

 #Create empty list to store Information

gain for respected attributes

 InformationGain = []

 AttributeName = []

 #Extract each attribute

 for attribute in df.keys():

 if attribute is not 'Class':

 #Get class occurance for each

attribute value

 subtable =

getHistTable(df,attribute)

 #Get class entropy of the data

 Ec =

getClassEntropy(classAttributes)

 #Calculate Information Gain for

each attribute

 InfoGain,EntropyAtt =

getInformationGain(subtable, Ec)

 #Append the value into the list

 InformationGain.append(InfoGain)

 AttributeName.append(attribute)

 print("Information Gain for %s:

%.2f and Entropy: %.2f"%

 (attribute,InfoGain,EntropyAtt))

 #Find out attribute with maximum

information gain

 indx = np.argmax(InformationGain)

 winnerNode = AttributeName[indx]

 print("\nWinner attrbute is: %s"%

(winnerNode))

 return winnerNode

#Function to get sub table for the attrebute

def getSubtable(df,node,atValues):

 #This function is written to get subtable

for given attribute values(such as table

for those persons whose salary is Medium)

 subtable = []

 #run a loop through the dataset and create

subtable

 for i in range(len(df[node])):

 if df[node][i]==atValues:

 row = df.loc[i,df.keys()]

 subtable.append(row)

 for c in range(len(df.keys())):

 if df.keys()[c]==node:

 break

 #Create a new dataframe

 subtable =

pd.DataFrame(subtable,index=range(len(subtable)))

 print(subtable)

 return subtable

#Function to build the tree by adding new nodes

def buildTree(df,tree=None):

 #Here we build our decision tree

 #Get attribute with maximum information

gain

 node = getNode(df)

 #Get distinct value of that attribute e.g

Salary is node and Low,Med and

 High are values

 attValue = np.unique(df[node])

 #Create an empty dictionary to create tree

 if tree is None:

 tree={}

 tree[node] = {}

 #Loop below is written for building tree

using recursion of the function,

 #We will create subtable of each attribute

value and try to find whether it

 have a pure subset or not,

 #if it is a pure subset we will stop tree

growing for that node. if it is

 not a pure set then we will..

 #again call the same function.

 for value in attValue:

 print("Value: %s"%value)

 subtable = getSubtable(df,node,value)

 clValue,counts =

np.unique(subtable['Class'],return_counts=True)

 if len(counts)==1:#Checking purity of

subset

 print("Class: %s\n"%clValue)

 tree[node][value] = clValue

 else:

 tree[node][value] =

buildTree(subtable)#Recursion of the function

 return tree

#Function to get prediction out of input tree

def predict(inst,tree):

 #This function will predict an input

instace's class using given tree

 #We will use recursion to traverse through

the tree same as we have done in case of

tree building

 for nodes in tree.keys():

 value = inst[nodes]

 for val in value:

 tree = tree[nodes][val]

 prediction = 0

 if type(tree) is dict:

 prediction = predict(inst,

tree)#Recursion

 else:

 prediction = tree

 break;

 return prediction

#Function to pre-process the dataset to get

data frame and set indexes

def preProcess(dataset):

 #Create a dataframe out of our dataset with

attribute names

 df = pd.DataFrame(dataset,columns=

['Name','Salary','Sex','Marital','Class'])

 #Remove name attribute as it is not

required for the calculations

 df.pop('Name')

 #Make sure last attribute of our dataset

must be Class attribute

 cols = list(df)

 cols.insert(len(cols),

cols.pop(cols.index('Class')))

 df = df.ix[:,cols]

 print(df)

 return df

Code of the CART
algorithm

import pprint

import sys

from csv import reader

import numpy as np

#Function to read csv file

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

#Function to create Train and Test set from the

original dataset

def getTrainTestData(dataset,split):

 training = []

 testing = []

 shape = np.shape(dataset)

 trainlength =

np.uint16(np.floor(split*shape[0]))

 for i in range(trainlength):

 training.append(dataset[i])

 for i in range(trainlength,shape[0]):

 testing.append(dataset[i])

 return training,testing

#Create splits to validate gini score

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub

sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold

 if values[attribute]<=threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

Calculate the Gini index for a split dataset

def gini_index(groups, class_values):

 gini = 0.0

 for class_value in class_values:

 for group in groups:

 size = len(group)

 if size == 0:

 continue

 proportion = [row[-1] for row in

group].count(class_value) /

 float(size)

 gini += (proportion * (1.0 -

proportion))

 return gini

#Function to get new node

def getNode(dataset):

 class_values = []

 for row in dataset:

 class_values.append(row[-1])

 #Extract unique class values present in

the dataset

 class_values =

np.unique(np.array(class_values))

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in range(len(dataset[0])-1):

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

Create a terminal node value

def terminalNode(group):

 outcomes = [row[-1] for row in group]

 return max(set(outcomes),

key=outcomes.count)

Create child splits for a node or make

terminal

def buildTree(node, max_depth, min_size,

depth):

 #Let's get groups information first.

 left, right = node['groups']

 del(node['groups'])

 # check if there are any element in the

left and right group

 if not left or not right:

 #If there is no element in the groups

call terminal Node

 combined = left+right

 node['left'] = terminalNode(combined)

 node['right']= terminalNode(combined)

 return

 # check if we have reached to maximum

depth

 if depth >= max_depth:

 node['left']=terminalNode(left)

 node['right'] = terminalNode(right)

 return

 # if all okey lest start building tree for

left side nodes

 # if minimum instances are done by the

node stop further build

 if len(left) <= min_size:

 node['left'] = terminalNode(left)

 else:

 #Create new node under left side of

the tree

 node['left'] = getNode(left)

 #append node under the tree and

increase depth by one.

 buildTree(node['left'], max_depth,

min_size, depth+1) #recursion will

take place in here

 # Similar procedure for the right side

nodes

 if len(right) <= min_size:

 node['right'] = terminalNode(right)

 else:

 node['right'] = getNode(right)

 buildTree(node['right'], max_depth,

min_size, depth+1)

Build a decision tree

def build_tree(train, max_depth, min_size):

 root = getNode(train)

 buildTree(root, max_depth, min_size, 1)

 return root

Print a decision tree

def print_tree(node, depth=0):

 if isinstance(node, dict):

 print('%s[X%d < %.2f]' % ((depth*' ',

(node['attribute']+1),

 node['value'])))

 print_tree(node['left'], depth+1)

 print_tree(node['right'], depth+1)

 else:

 print('%s[%s]' % ((depth*' ', node)))

#Function to get prediction from input tree

def predict(node, row):

 #Get the node value and check whether the

attribute value is less than or

 equal.

 if row[node['attribute']] <=

node['value']:

 #If yes enter into left branch and

check whether it has another node or

 the class value.

 if isinstance(node['left'], dict):

 return predict(node['left'],

row)#Recursion

 else:

 #If there is no node in the branch

 return node['left']

 else:

 if isinstance(node['right'], dict):

 return predict(node['right'], row)

 else:

 return node['right']

#Function to check accuracy of the dataset

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) *

100.0

#Function to convert string attribute values to

float

def str_column_to_float(dataset, column):

 for row in dataset:

 if row[column]=='?':

 row[column] = 0

 else:

 row[column] =

float(row[column].strip())

The following is the code for Chapter 3,
Random Forest.

Code for random
forest
This code includes only those functions that
are different from CART:

Build a decision tree

def build_tree_RF(train, max_depth,

min_size,nfeatures):

 root = getNodeRF(train,nfeatures)

 buildTreeRF(root, max_depth, min_size,

1,nfeatures)

 return root

Create child splits for a node or make

terminal

def buildTreeRF(node, max_depth, min_size,

depth,nfeatures):

 #Let's get groups information first.

 left, right = node['groups']

 del(node['groups'])

 # check if there are any element in the

left and right group

 if not left or not right:

 #If there is no element in the groups

call terminal Node

 combined = left+right

 node['left'] = terminalNode(combined)

 node['right']= terminalNode(combined)

 return

 # check if we have reached to maximum

depth

 if depth >= max_depth:

 node['left']=terminalNode(left)

 node['right'] = terminalNode(right)

 return

 # if all okey lest start building tree for

left side nodes

 # if minimum instances are done by the

node stop further build

 if len(left) <= min_size:

 node['left'] = terminalNode(left)

 else:

 #Create new node under left side of

the tree

 node['left'] =

getNodeRF(left,nfeatures)

 #append node under the tree and

increase depth by one.

 buildTree(node['left'], max_depth,

min_size, depth+1) #recursion will

take place in here

 # Similar procedure for the right side

nodes

 if len(right) <= min_size:

 node['right'] = terminalNode(right)

 else:

 node['right'] =

getNodeRF(right,nfeatures)

 buildTree(node['right'], max_depth,

min_size, depth+1)

#Function to get new node

def getNodeRF(dataset):

 class_values = []

 for row in dataset:

 class_values.append(row[-1])

 #Extract unique class values present in

the dataset

 class_values =

np.unique(np.array(class_values))

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Select Random features

 features = list()

 while len(features) < n_features:

 index = randrange(len(dataset[0])-1)

 if index not in features:

 features.append(index)

 #Run loop to access each attribute and

attribute values

 for index in index:

 for row in dataset:

 groups = createSplit(index,

row[index], dataset)

 gini = gini_index(groups,

class_values)

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

Create a random subsample from the dataset

with replacement

def subsample(dataset, ratio):

 sample = list()

 n_sample = round(len(dataset) * ratio)

 while len(sample) < n_sample:

 index = randrange(len(dataset))

 sample.append(dataset[index])

 return sample

Make a prediction with a list of bagged trees

def bagging_predict(trees, row):

 predictions = [predict(tree, row) for tree

in trees]

 return max(set(predictions),

key=predictions.count)

Random Forest Algorithm

def random_forest(train, test, max_depth,

min_size, sample_size, n_trees,

 n_features):

 trees = list()

 for i in range(n_trees):

 sample = subsample(train, sample_size)

 tree = build_tree_RF(sample,

max_depth, min_size, n_features)

 trees.append(tree)

 predictions = [bagging_predict(trees, row)

for row in test]

 return(predictions)

#Create cross validation sets

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index =

randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Evaluate an algorithm using a cross

validation split

def evaluate_algorithm(dataset, algorithm,

n_folds, *args):

 folds = cross_validation_split(dataset,

n_folds)

 scores = list()

 for fold in folds:

 train_set = list(folds)

 train_set.remove(fold)

 train_set = sum(train_set, [])

 test_set = list()

 for row in fold:

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 predicted = algorithm(train_set,

test_set, *args)

 actual = [row[-1] for row in fold]

 accuracy = accuracy_metric(actual,

predicted)

 scores.append(accuracy)

 return scores

Up next is the code for Chapter 4, Random
Subspace and KNN Bagging.

Code for KNN and
subspace bagging

#Import math for calculations of square roots

import math

import operator

from random import randrange

#Function to get distance between test instance

and training set

def DistanceMetric(instance1, instance2,

isClass=None):

 #If Class variable is in the instance

 if isClass:

 length = len(instance1)-1

 else:

 length = len(instance1)

 #Initialize variable to store distance

 distance = 0

 #Lets run a loop to calculate element wise

differences

 for x in range(length):

 #Euclidean distance

 distance += pow((instance1[x] -

instance2[x]), 2)

 return math.sqrt(distance)

#Function to get nearest neighbors

def getNeighbors(trainingSet, testInstance, k):

 #Create a list variable to store distances

between test and training

 instance.

 distances = []

 #Get distance between each instance in the

training set and the test

 instance.

 for x in range(len(trainingSet)):

 #As we will have class variable in the

training set isClass

 will be true

 dist = DistanceMetric(testInstance,

trainingSet[x], isClass=True)

 #Append the distance of each instance

to the distance list

 distances.append((trainingSet[x],

dist))

 #Sort the distances in ascending order

 distances.sort(key=operator.itemgetter(1))

 #Create a list to store the neighbors

 neighbors = []

 #Run a loop to get k neighbors from the

sorted distances.

 for x in range(k):

 neighbors.append(distances[x][0])

 return neighbors

#Function to get prediction

def getPrediction(neighbors):

 #Create a dictionary variable to store

votes from the neighbors

 #We will use class attribute as the

dictionary keys and their occurrence as

 key value.

 classVotes = {}

 #Go to each neighbor and take the vote for

the class

 for x in range(len(neighbors)):

 #Get the class value of the neighbor

 response = neighbors[x][-1]

 #Create class key if its not there;

 #If class key is in the dictionary

increase it by one.

 if response in classVotes:

 classVotes[response] += 1

 else:

 classVotes[response] = 1

 #Sort the dictionary keys on the basis of

key values in descending order

 sortedVotes =

sorted(classVotes.iteritems(),

key=operator.itemgetter(1),

 reverse=True)

 #Return the key name (class) with the

highest value

 return sortedVotes[0][0]

 KNN subspace
bagging code

def DistanceMetricBagged(instance1,

instance2,n_features):

 #Initialize variable to store distance

 distance = 0

 features = list()

 #Select random features to apply subspace

bagging

 while len(features) < n_features:

 index = randrange(len(instance1)-1)

 if index not in features:

 features.append(index)

 #Lets run a loop to calculate element wise

differences for the selected

 features only.

 for x in features:

 #Euclidean distance

 distance += pow((instance1[x] -

instance2[x]), 2)

 return math.sqrt(distance)

def getNeighborsBagged(trainingSet,

testInstance, k,n_features):

 #Create a list variable to store distances

between test and training

 instance.

 distances = []

 #Get distance between each instance in the

training set and the test

 instance.

 for x in range(len(trainingSet)):

 #As we will have class variable in the

training set isClass

 will be true

 dist =

DistanceMetricBagged(testInstance,

trainingSet[x],n_features)

 #Append the distance of each instance

to the distance list

 distances.append((trainingSet[x],

dist))

 #Sort the distances in ascending order

 distances.sort(key=operator.itemgetter(1))

 #Create a list to store the neighbors

 neighbors = []

 #Run a loop to get k neighbors from the

sorted distances.

 for x in range(k):

 neighbors.append(distances[x][0])

 return neighbors

The following is the code for Chapter 5,
AdaBoost Classifier.

Code of the
AdaBoost classifier

import sys

import numpy as np;

from matplotlib import pyplot as plt

#Get Gini Index

def gini_index(groups, class_values):

 #Initialize Gini variable

 gini = 0.0

 #Calculate proportion for each class

 for class_value in class_values:

 #Extract groups

 for group in groups:

 #Number of instance in the group

 size = len(group)

 if size == 0:

 continue

 #Initialize a list to store class

index of the instances

 r = []

 cl = []

 #get class of each instance in the

group

 for row in group:

 r.append(row[-1])#Weight

Append

 cl.append(row[-2])#Class

Append

 r = np.array(r)

 #Extract Class indexes of the

current class value

 class_index =

np.where(cl==class_value)

 #Initialize a variable to add the

weights of current class

 w_add=0

 #Add the weights of the current

class using class indexes

 for w in class_index[0]:

 w_add+= r[w];

 #Calculate class proportion using

weights

 proportion = w_add/np.sum(r)

 #Calculate Gini index

 gini += (proportion * (1.0 -

proportion))

 return gini

#function to create split for getting node

value

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold

 if values[attribute]<=threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

#Function to Node for decision stump

def getNode(dataset):

 class_values = []

 #Extract unique class values present in

the data set

 for row in dataset:

 class_values.append(row[-2])#Class

values are in the second last column

 class_values = np.unique(class_values)

 #initialize variables to store gini score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 gScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in

range(len(dataset[0])-2):#leave last two

columns

 for row in dataset:

 #Create the groups

 groups = createSplit(index,

row[index], dataset)

 #Extract gini score for the

threshold

 gini = gini_index(groups,

class_values)

 #If gini score is lower than the

previous one choose return it

 if gini < gScore:

 winnerAttribute,

attributeValue, gScore, leftGroup = index,

row[index], gini, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

def terminalNode(group):

 outcomes = [row[-2] for row in group]

 return max(set(outcomes),

key=outcomes.count)

#Function to create decision stump

def decision_stump(dataset):

 #Get node value with best gini score

 node = getNode(dataset)

 #Separate out the groups from the node and

remove them

 left, right = node['groups']

 del(node['groups'])

 #Check whether there is any element in the

groups or not

 #If there is not any element put the class

value with maximum occurence

 if not left or not right:

 node['left'] = node['right'] =

terminalNode(left + right)

 return node

 #Put left group's maximum occur class

value in left branch

 node['left']=terminalNode(left)

 #Put right group's maximum occur class

value in right branch

 node['right'] = terminalNode(right)

 return node

#Function for get predict

def predict(node, row):

 #Get the node value and check whether the

attribute value is less than or

 equal.

 if row[node['attribute']] <=

node['value']:

 #If yes enter into left branch and

check whether it has another node or

 the class value.

 return node['left']

 else:

 return node['right']

#Function to calculate error

def getError(actual,predicted,weights):

 #Initialize the error variable

 error = 0

 #We will store the error of each instance

in a vector

 error_vec=[]

 #Run a loop to calculate error for each

instance

 for i in range(len(actual)):

 diff = predicted[i]!=actual[i]

 #Weights multiplication to the

difference of actual and predicted values

 error+= weights[i]*(diff)

 #Append the difference to the error

vector

 error_vec.append(diff)

 return error,error_vec

#Function of adaboost algorithm for updating

weihghts

def AdaBoostAlgorithm(dataset,iterations):

 #Initialize the weights of the size of

data set

 weights =

np.ones(len(dataset),dtype="float32")/len(dataset)

 dataset = np.array(dataset)

 #Add Weights column to the data set(Now

last column will be the weights)

 dataset = np.c_[dataset,weights]

 #Create an empty list to store alpha

values

 alphas = []

 #Create a list to add weak

learners(decision stumps)

 weaks = []

 er = sys.maxsize

 #Lets run the loop for number of

iteration(number of classifiers)

 for itr in range(iterations):

 #Create decision tree from the non

weighted data-set

 ds = decision_stump(dataset)

 #Create a list to store the

predictions of the decision stump

 pred=[]

 #Create a list to store actual outputs

 actual = []

 #Let's predict output for each

instance in the data set

 for row in dataset:

 actual.append(row[-2])

 pred.append(predict(ds, row))

 #Here we will find out difference

between predicted and actual output

 error,error_vec = getError(actual,

pred,weights)

 #If error is greater than 0.5

classifier is not able to classify the

 dataset

 if error>=0.0:

 break

 eps = sys.float_info.epsilon

 #Let's find out the alpha with the

help of error

 alpha = (0.5 * np.log((1-

error)/(error+eps)))

 #Create empty vector to store weight

updates

 w = np.zeros(len(weights))

 # Update the weights using alpha value

 for i in range(len(error_vec)):

 #For wrong prediction increase the

weights

 if error_vec[i]!=0:

 w[i] = weights[i] *

np.exp(alpha)

 #For correct prediction decrease

the weights

 else:

 w[i] = weights[i] * np.exp(-

alpha)

 #Normalize the weights and update

previous weight vector

 weights = w / w.sum()

 #Put the updated weights into the data

set by over-writing previous

 weights

 dataset[:,-1]=weights

 print("\nClassifier %i stats:"%itr)

 print(ds)

 print("Error: %.3f and alpha: %.3f"%

(error,alpha))

 er = error

 #Append alpha value to the list to

used at the time of testing

 alphas.append(alpha)

 #Append the weak learner to the list

 weaks.append(ds)

 return weaks,alphas

#Function to evaluate accuracy

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) *

100.0

The following is the code for Chapter 6,
Gradient Boosting Machines.

Code of GBMs
import numpy as np

import sys

def terminalNodeReg(group):

 #Get all the target labels into the List

 class_values = [row[-1] for row in group]

 #Return the Mean value of the list

 return np.mean(class_values)

Calculate the SSE index for a split dataset

def SquaredError(groups):

 #Initialize the variable for SSE

 sse = 0.0

 #Iterate for both the groups

 for group in groups:

 size = len(group)

 #If length is 0 continue for the next

group

 if size == 0:

 continue

 #Take all the class values into a list

 class_values = [row[-1] for row in

group]

 #Calculate SSE for the group

 sse += np.sum((class_values-

np.mean(class_values))**2)

 return sse

#Function to get new node

def getNode(dataset):

 #initialize variables to store error score,

attribute index and split groups

 winnerAttribute = sys.maxsize

 attributeValue = sys.maxsize

 errorScore = sys.maxsize

 leftGroup = None

 #Run loop to access each attribute and

attribute values

 for index in range(len(dataset[0])-1):

 for row in dataset:

 #Get split for the attribute value

 groups = createSplit(index,

row[index], dataset)

 #Calculate SSE for the group

 sse = SquaredError(groups)

 #print("SSE for the attribute

%.2f's value %.2f is %.3f"%

(index+1,row[index],sse))

 #If SSE is less than previous

attribute's SSE return attribute value as Node

 if sse < errorScore:

 winnerAttribute,

attributeValue, errorScore, leftGroup = index,

row[index], sse, groups

 #Once done create a dictionary for node

 node =

{'attribute':winnerAttribute,'value':attributeValue,'groups':leftGroup}

 return node

#Create splits to test for node values

def createSplit(attribute,threshold,dataset):

 #Initialize two lists to store the sub sets

 lesser, greater = list(),list()

 #Loop through the attribute values and

create sub set out of it

 for values in dataset:

 #Apply threshold

 if values[attribute]<=threshold:

 lesser.append(values)

 else:

 greater.append(values)

 return lesser,greater

Create child splits for a node or make

terminal

def buildTreeReg(node, max_depth, min_size,

depth):

 #Lets get groups information first.

 left, right = node['groups']

 del(node['groups'])

 # check if there are any element in the

left and right group

 if not left or not right:

 #If there is no element in the groups

call terminal Node

 combined = left+right

 node['left'] =

terminalNodeReg(combined)

 node['right']=

terminalNodeReg(combined)

 return

 # check if we have reached to maximum depth

 if depth >= max_depth:

 node['left']=terminalNodeReg(left)

 node['right'] = terminalNodeReg(right)

 return

 # if all okey lest start building tree for

left side nodes

 # if minimum instances are done by the node

stop further build

 if len(left) <= min_size:

 node['left'] = terminalNodeReg(left)

 else:

 #Create new node under left side of the

tree

 node['left'] = getNode(left)

 #append node under the tree and

increase depth by one.

 buildTreeReg(node['left'], max_depth,

min_size, depth+1) #recursion will

 take place in here

 # Similar procedure for the right side

nodes

 if len(right) <= min_size:

 node['right'] = terminalNodeReg(right)

 else:

 node['right'] = getNode(right)

 buildTreeReg(node['right'], max_depth,

min_size, depth+1)

Build a decision tree

def build_tree(train, max_depth, min_size):

 #Add the root node to the tree

 root = getNode(train)

 #Start building the from the root's

branches tree

 buildTreeReg(root, max_depth, min_size, 1)

 return root

#Function to get prediction from input tree

def predict(node, row):

 #Get the node value and check whether the

attribute value is less than or equal.

 if row[node['attribute']] <= node['value']:

 #If yes enter into left branch and

check whether it has another node or the class

value.

 if isinstance(node['left'], dict):

 return predict(node['left'],

row)#Recursion

 else:

 #If there is no node in the branch

 return node['left']

 else:

 if isinstance(node['right'], dict):

 return predict(node['right'], row)

 else:

 return node['right']

def getResidual(actual,pred):

 #Create an empty list to store individual

error of the instances

 residual = []

 # Run a loop to get difference between

output and prediction of each instance

 for i in range(len(actual)):

 #Get the difference and add the

difference to the list of residuals

 diff = (actual[i]-pred[i])

 residual.append(diff)

 #Calculate the Sum of squared error between

output and prediction

 mse = np.sum(np.array(residual)**2)

 return residual,mse

def

GradientBoost(dataset,depth,mincount,iterations):

 dataset = np.array(dataset)

 #Create a list to add weak

learners(decision stumps)

 weaks = []

 #Lets run the loop for number of

iteration(number of classifiers)

 for itr in range(iterations):

 #Create decision tree from the data-set

 ds = build_tree(dataset,depth,mincount)

 #Create a list to store the predictions

of the decision stump

 pred=[]

 #Create a list to store actual outputs

 actual = []

 #Let's predict output for each instance

in the data set

 for row in dataset:

 actual.append(row[-1])

 pred.append(predict(ds, row))

 #Here we will find out difference

between predicted and actual output

 residuals,error = getResidual(actual,

pred)

 #Print the error status

 print("\nClassifier %i error is %.5f"%

(itr,error))

 #Check for the convergence

 if error<=0.00001:

 break

 #Replace the previous labels with the

current differences(Residuals)

 dataset[:,-1] = residuals

 #Append the weak learner to the list

 weaks.append(ds)

 return weaks

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Up next is the code for Chapter 8, Stacked
Generalization.

Full code of
implementation

Test stacking on the sonar dataset

from random import seed

from random import randrange

from csv import reader

from math import sqrt

from math import exp

Load a CSV file

def load_csv(filename):

 dataset = list()

 with open(filename, 'r') as file:

 csv_reader = reader(file)

 for row in csv_reader:

 if not row:

 continue

 dataset.append(row)

 return dataset

Convert string column to float

def str_column_to_float(dataset, column):

 for row in dataset:

 row[column] =

float(row[column].strip())

Convert string column to integer

def str_column_to_int(dataset, column):

 class_values = [row[column] for row in

dataset]

 unique = set(class_values)

 lookup = dict()

 for i, value in enumerate(unique):

 lookup[value] = i

 for row in dataset:

 row[column] = lookup[row[column]]

 return lookup

Split a dataset into k folds

def cross_validation_split(dataset, n_folds):

 dataset_split = list()

 dataset_copy = list(dataset)

 fold_size = int(len(dataset) / n_folds)

 for i in range(n_folds):

 fold = list()

 while len(fold) < fold_size:

 index =

randrange(len(dataset_copy))

fold.append(dataset_copy.pop(index))

 dataset_split.append(fold)

 return dataset_split

Calculate accuracy percentage

def accuracy_metric(actual, predicted):

 correct = 0

 for i in range(len(actual)):

 if actual[i] == predicted[i]:

 correct += 1

 return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross

validation split

def evaluate_algorithm(dataset, algorithm,

n_folds, *args):

 folds = cross_validation_split(dataset,

n_folds)

 scores = list()

 for fold in folds:

 train_set = list(folds)

 train_set.remove(fold)

 train_set = sum(train_set, [])

 test_set = list()

 for row in fold:

 row_copy = list(row)

 test_set.append(row_copy)

 row_copy[-1] = None

 predicted = algorithm(train_set,

test_set, *args)

 actual = [row[-1] for row in fold]

 accuracy = accuracy_metric(actual,

predicted)

 scores.append(accuracy)

 return scores

Calculate the Euclidean distance between two

vectors

def euclidean_distance(row1, row2):

 distance = 0.0

 for i in range(len(row1)-1):

 distance += (row1[i] - row2[i])**2

 return sqrt(distance)

Locate neighbors for a new row

def get_neighbors(train, test_row,

num_neighbors):

 distances = list()

 for train_row in train:

 dist = euclidean_distance(test_row,

train_row)

 distances.append((train_row, dist))

 distances.sort(key=lambda tup: tup[1])

 neighbors = list()

 for i in range(num_neighbors):

 neighbors.append(distances[i][0])

 return neighbors

Make a prediction with kNN

def knn_predict(model, test_row,

num_neighbors=2):

 neighbors = get_neighbors(model, test_row,

num_neighbors)

 output_values = [row[-1] for row in

neighbors]

 prediction = max(set(output_values),

key=output_values.count)

 return prediction

Prepare the kNN model

def knn_model(train):

 return train

Make a prediction with perceptron

def perceptron_predict(weights,row):

 #Row is the input instance

 #We will consider first weight as the bias for

simplyfied the calculations

 activation = weights[0]

 #Now run a loop to multiply each attribute

value of the instance with the weight

 #And add the result to the activation of

previous attribute

 for i in range(len(row)-1):

 activation += weights[i + 1] * row[i]

 #Here we will return 1 if activation is a non

negative value and zero in other case

 return 1.0 if activation >= 0.0 else 0.0

Estimate Perceptron weights using stochastic

gradient descent

def perceptron_model(train, l_rate=0.01,

n_epoch=5000):

 #Lets initialize the weights by 0

 weights = [0.0 for i in

range(len(train[0]))]

 #We will update the weights for given

number of epoch

 for epoch in range(n_epoch):

 #Extract each row from the training set

 for row in train:

 #Predict the value for the instance

 prediction =

perceptron_predict(weights,row)

 #Calculate the difference(gradient)

between actual and predicted

 value

 error = row[-1] - prediction

 #Update the bias value using given

learning rate and error

 weights[0] = weights[0] + l_rate *

error

 #Update the weights for each

attribute using learning rate

 for i in range(len(row)-1):

 weights[i + 1] = weights[i + 1]

+ l_rate * error * row[i]

 #Return the updated weights and biases

 return weights

Make a prediction with coefficients

def logistic_regression_predict(model, row):

 #First weight of the model will be bias

similar as Perceptron function

 yhat = model[0]

 #We will run a loop to multiply each

attribute value with the corresponding

 weights

 #This is similar to activation calculation

in perceptron algorithm

 for i in range(len(row)-1):

 yhat += model[i + 1] * row[i]

 #Here we will apply logistic function on

the linear combination of weights

 and attributes

 #This is the place where linear and

logistic regression differs

 return 1.0 / (1.0 + exp(-yhat))

Estimate logistic regression coefficients

using stochastic gradient descent

def logistic_regression_model(train,

l_rate=0.01, n_epoch=5000):

 #Initialize the weights with the zero

values

 coef = [0.0 for i in range(len(train[0]))]

 #Repeat the procedure for given number of

epochs

 for epoch in range(n_epoch):

 #Get prediction for each row and update

weights based on error value

 for row in train:

 #Predict y for the given x

 yhat =

logistic_regression_predict(coef, row)

 #Get the error value

(gradient/slope/change)

 error = row[-1] - yhat

 #Apply gradient descent here to

update the weights and biases

 #Update Bias first

 coef[0] = coef[0] + l_rate * error

* yhat * (1.0 - yhat)

 #Now update the Weights

 for i in range(len(row)-1):

 coef[i + 1] = coef[i + 1] +

l_rate * error * yhat * (1.0 - yhat)

 * row[i]

 #Return the trained weights and biases

 return coef

Make predictions with sub-models and

construct a new stacked row

def to_stacked_row(models, predict_list, row):

 #Let's Create an empty list to store

predictions from sub models

 stacked_row = list()

 #Run a loop to fetch stored models in the

List

 for i in range(len(models)):

 #Start prediction for each row by each

model

 prediction = predict_list[i](models[i],

row)

 #Store the prediction in the list

 stacked_row.append(prediction)

 #Append class values to the new row

 stacked_row.append(row[-1])

 #Extend the old row aby adding stacked row

 return row[0:len(row)-1] + stacked_row

Stacked Generalization Algorithm

def stacking(train, test):

 #Let's define the sub model first

 model_list = [knn_model, perceptron_model]

 #We will create a prediction list to create

new row

 predict_list = [knn_predict,

perceptron_predict]

 #Create an empty list to store the trained

models

 models = list()

 #Lets train each sub model individually on

the dataset

 for i in range(len(model_list)):

 model = model_list[i](train)

 models.append(model)

 #Create a new stacked data set from

prediction of sub models

 stacked_dataset = list()

 for row in train:

 #Get new row

 stacked_row = to_stacked_row(models,

predict_list, row)

 #Append it to new dataset

 stacked_dataset.append(stacked_row)

 #We will train our final classifier on the

stacked dataset

 stacked_model =

logistic_regression_model(stacked_dataset)

 #lets create a list of prediction of the

stacked output

 predictions = list()

 #Here we will combine all the classifier

together to make stack of

 classifiers

 for row in test:

 #Get new row from prediction of sub

models

 stacked_row = to_stacked_row(models,

predict_list, row)

 #Append new row to the new dataset

 stacked_dataset.append(stacked_row)

 #Classify the new row using final

classifier

 prediction =

logistic_regression_predict(stacked_model,

stacked_row)

 #As final classifier gives a continuous

value round it to nearest integer

 prediction = round(prediction)

 #Append the prediction to the final

list of predictions

 predictions.append(prediction)

 return predictions

Test stacking on the sonar dataset

seed(1)

load and prepare data

filename = 'sonar.all-data.csv'

dataset = load_csv(filename)

convert string attributes to integers

for i in range(len(dataset[0])-1):

 str_column_to_float(dataset, i)

convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1)

n_folds = 5

scores = evaluate_algorithm(dataset, stacking,

n_folds)

print('Scores: %s' % scores)

print('Mean Accuracy: %.3f%%' %

(sum(scores)/float(len(scores))))

The following is the code for Chapter 10,
Modern Day Machine Learning.

Full code of LSTM
implementation

Load Larger LSTM network and generate text

import sys

import numpy

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint

from keras.utils import np_utils

load ascii text and covert to lowercase

filename = "wonderland.txt"

raw_text = open(filename).read()

raw_text = raw_text.lower()

create mapping of unique chars to integers,

and a reverse mapping

chars = sorted(list(set(raw_text)))

char_to_int = dict((c, i) for i, c in

enumerate(chars))

int_to_char = dict((i, c) for i, c in

enumerate(chars))

summarize the loaded data

n_chars = len(raw_text)

n_vocab = len(chars)

print ("Total Characters: ", n_chars)

print("Total Vocab: ", n_vocab)

prepare the dataset of input to output pairs

encoded as integers

seq_length = 100

dataX = []

dataY = []

for i in range(0, n_chars - seq_length, 1):

 seq_in = raw_text[i:i + seq_length]

 seq_out = raw_text[i + seq_length]

 dataX.append([char_to_int[char] for char

in seq_in])

 dataY.append(char_to_int[seq_out])

n_patterns = len(dataX)

print ("Total Patterns: ", n_patterns)

reshape X to be [samples, time steps,

features]

X = numpy.reshape(dataX, (n_patterns,

seq_length, 1))

normalize

X = X / float(n_vocab)

one hot encode the output variable

y = np_utils.to_categorical(dataY)

define the LSTM model

model = Sequential()

model.add(LSTM(256, input_shape=(X.shape[1],

X.shape[2]), return_sequences=True))

model.add(Dropout(0.2))

model.add(LSTM(256))

model.add(Dropout(0.2))

model.add(Dense(y.shape[1],

activation='softmax'))

load the network weights

filename = "weights-improvement-47-1.2219-

bigger.hdf5"

model.load_weights(filename)

model.compile(loss='categorical_crossentropy',

optimizer='adam')

pick a random seed

start = numpy.random.randint(0, len(dataX)-1)

pattern = dataX[start]

print ("Seed:")

print ("\"", ''.join([int_to_char[value] for

value in pattern]), "\"")

generate characters

for i in range(1000):

 x = numpy.reshape(pattern, (1,

len(pattern), 1))

 x = x / float(n_vocab)

 prediction = model.predict(x, verbose=0)

 index = numpy.argmax(prediction)

 result = int_to_char[index]

 seq_in = [int_to_char[value] for value in

pattern]

 sys.stdout.write(result)

 pattern.append(index)

 pattern = pattern[1:len(pattern)]

print ("\nDone.")

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Introduction to Ensemble Learning
	What is ensemble machine learning?
	The purpose of ensemble machine learning
	How to create an ensemble system
	Quantification of performance
	Bias and variance errors
	Methods to create ensemble systems
	Bagging
	Boosting
	Stacking

	Summary

	Decision Trees
	How do decision trees work?
	ID3 algorithm for decision tree building
	Root node
	Salary
	The Sex attribute
	Marital status

	Parent node
	Choosing between the Sex and Marital attributes for the low salary group
	Choosing between the Sex and Marital attributes for the Med salary group
	Marital status

	Case study – car evaluation problem
	Summary

	Random Forest
	Classification and regression trees
	Gini index for impurity check
	Node selection
	Creating a split

	Tree building
	At depth – 1 (root node)
	At depth – 2 (left branch)
	At depth – 2 (right branch)

	Case study – breast cancer type prediction
	Decision tree bagging
	From bagging to random forest

	Summary

	Random Subspace and KNN Bagging
	Subspace bagging
	Case study – subspace bagging
	More information about the dataset

	KNN classification
	KNN for spam filtering
	Dataset
	Dataset information
	Attribute information

	KNN bagging with random subspaces
	Summary

	AdaBoost Classifier
	Boosting
	AdaBoost in a nutshell
	Weak classifier
	AdaBoost in action

	Application of the AdaBoost classifier in face detection
	Face detection using Haar cascades
	Integral image

	Implementation using OpenCV

	Summary

	Gradient Boosting Machines
	Gradient Boosting Machines
	What is the difference?
	Create split
	Node selection
	Build tree

	Regression tree as a classifier
	GBM implementation
	Algorithm

	Improvements to basic gradient boosting
	Tree constraints
	Weighted updates
	Stochastic gradient boosting
	Penalized gradient boosting

	Summary

	XGBoost – eXtreme Gradient Boosting
	XGBoost – supervised learning
	Models and parameters
	Objective function – training loss + regularization
	Why introduce the general principle?

	XGBoost features
	Model features
	System features
	Algorithm features

	Why use XGBoost?
	XGBoost execution speed
	Model performance

	How to install
	Building the shared library
	Building on Ubuntu/Debian
	Building on Windows
	A trick for easy installation on a Windows machine

	XGBoost in action
	Dataset information
	Attribute information

	XGBoost parameters
	General parameters
	Booster parameters
	Learning task parameters

	Parameter tuning – number and size of decision trees
	Problem description – Otto dataset
	Tune the number of decision trees in XGBoost
	Tuning the size of decision trees in XGBoost
	Tuning the number of trees and max depth in XGBoost

	Summary

	Stacked Generalization
	Stacked generalization
	Submodel training
	KNN classification
	Distance calculation (Euclidean)
	Estimating the neighbors
	Making predictions using voting

	Perceptron
	Training the perceptron
	Gradient descent
	Stochastic gradient descent
	Implementation of perceptron

	Logistic regression
	The logistic function
	Representation of logistic regression
	Modeling probability using logistic regression
	Learning the model
	Prediction using logistic regression
	Implementation of algorithm

	Stacked generalization implementation
	Practical application – Sonar dataset (Mine and Rock prediction)
	More information about the dataset

	Summary

	Stacked Generalization – Part 2
	Feature selection
	Why feature selection?
	Simplification of models
	Dataset information
	Predicted attribute
	Attribute information

	Shorter training time
	To avoid the curse of dimensionality
	Enhanced generalization by reducing overfitting

	Feature selection for machine learning
	Univariate selection
	Recursive Feature Elimination
	Principle Component Analysis
	Choosing important features (feature importance)

	Understanding the SVM
	How does SVM work?
	Hyperplane – separation between the data points

	Implementation of an SVM
	Objective function
	Function optimization
	Handling a nonlinear dataset

	Stacking of nonlinear algorithms
	Spam classification with stacking
	Dataset information
	Attribute information

	How to choose classifiers?

	Summary

	Modern Day Machine Learning
	Artificial Neural Networks (feed-forward)
	How does ANN work?
	Training of ANNs
	Learning by backpropagation

	ANN implementation using Keras and TensorFlow
	TensorFlow for machine learning
	Keras for machine learning

	Digit classification using Keras and TensorFlow

	Deep learning
	Convolutional Neural Networks
	Local receptive fields
	Shared weights and biases
	Pooling layers
	Combining all the layers

	Implementation of CNN in Python

	Recurrent Neural Networks
	How RNN works (unrolling RNN)
	Unrolling the forward pass
	Unrolling the backward pass
	Backpropagation Through Time
	Backpropagation training algorithm
	Backpropagation Through Time

	Long Short-Term Memory networks
	The idea behind LSTMs
	Step-by-step LSTM walkthrough
	Text generation using LSTM
	Problem description – project Gutenberg
	LSTM model
	Generating text with an LSTM Network

	Summary

	Troubleshooting
	Full code of the implemented algorithm ID3
	Code of the CART algorithm
	Code for random forest
	Code for KNN and subspace bagging
	KNN subspace bagging code

	Code of the AdaBoost classifier
	Code of GBMs
	Full code of implementation
	Full code of LSTM implementation

