Figure 8.20

8.6 Techniques to Improve Classification Accuracy 377

0.8 4

e
(o)}
1

<o
~
1

True positive rate

00 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

ROC curves of two classification models, M; and M,. The diagonal shows where, for every
true positive, we are equally likely to encounter a false positive. The closer an ROC curve is
to the diagonal line, the less accurate the model is. Thus, M1 is more accurate here.

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer
true positives, and more and more false positives, the curve eases off and becomes more
horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several
software packages are able to perform such calculation. The closer the area is to 0.5, the
less accurate the corresponding model is. A model with perfect accuracy will have an
area of 1.0.

Techniques to Improve Classification Accuracy

In this section, you will learn some tricks for increasing classification accuracy. We focus
on ensemble methods. An ensemble for classification is a composite model, made up of
a combination of classifiers. The individual classifiers vote, and a class label prediction
is returned by the ensemble based on the collection of votes. Ensembles tend to be more
accurate than their component classifiers. We start off in Section 8.6.1 by introducing
ensemble methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and
random forests (Section 8.6.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In
many real-world data domains, however, the data are class-imbalanced, where the
main class of interest is represented by only a few tuples. This is known as the class

378 Chapter 8 Classification: Basic Concepts

8.6.1

Figure 8.21

imbalance problem. We also study techniques for improving the classification accuracy
of class-imbalanced data. These are presented in Section 8.6.5.

Introducing Ensemble Methods

Bagging, boosting, and random forests are examples of ensemble methods (Figure 8.21).
An ensemble combines a series of k learned models (or base classifiers), My, Ma, ..., Mg,
with the aim of creating an improved composite classification model, M. A given data
set, D, is used to create k training sets, Dy, Ds, ..., Dy, wherelD; [1 < i < k—1) is used
to generate classifier Given a new data tuple to classify, thebase classifiers each vote
by returning a class prediction. The ensemble returns a class prediction based on the
votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, con-

sider an ensemble that performs majority voting. That is, given a tuple X to classify, it
collects the class label predictions returned from the base classifiers and outputs the class
in majority. The base classifiers may make mistakes, but the ensemble will misclassify X
only if over half of the base classifiers are in error. Ensembles yield better results when
there is significant diversity among the models. That is, ideally, there is little correla-
tion among classifiers. The classifiers should also perform better than random guessing.
Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem
described by two attributes, x; and x;. The problem has a linear decision boundary.
Figure 8.22(a) shows the decision boundary of a decision tree classifier on the problem.
Figure 8.22(b) shows the decision boundary of an ensemble of decision tree classifiers
on the same problem. Although the ensemble’s decision boundary is still piecewise
constant, it has a finer resolution and is better than that of a single tree.

New data
tuple

Y
—\

Combine
votes

—> Prediction

Increasing classifier accuracy: Ensemble methods generate a set of classification models,

M, My, ..., My. Given a new data tuple to classify, each classifier “votes” for the class label
of that tuple. The ensemble combines the votes to return a class prediction.

Figure 8.22

http://stats.stackexchange.com/questions/1889
1/bagging-boosting-and-stacking-in-machine-lea
rning

)|\5Auga>u)9@;_>@~ay&yb&JJ.
03,5 bagging,bodtstrap,stacking euu,e3Jl aw

bl o &8lg)> aS yua ol bagging s (slol aiss
s puiSao A diga 031> 5,5yl | bootstap Jas
puduo Gujgel O U 1) dowe

Coud bo wlg> Vduw,

Bagging = use Doctor to resolve your patient

Training set = Bootstrap sample

8.6 Techniques to Improve Classification Accuracy 379

Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a
linearly separable problem (i.e., where the actual decision boundary is a straight line). The
decision tree struggles with approximating a linear boundary. The decision boundary of the
ensemble is closer to the true boundary. Source: From Seni and Elder [SE10]. (©) 2010 Morgan
& Claypool Publishers; used with permission.

Bagging
We now take an intuitive look at how bagging works as a method of increasing accuracy.
Suppose that you are a patient and would like to have a diagnosis made based on your
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any other, you may choose this as the final or best diagnosis.
That is, the final diagnosis is made based on a majority vote, where each doctor gets an
equal vote. Now replace each doctor by a classifier, and you have the basic idea behind
bagging. Intuitively, a majority vote made by a large group of doctors may be more
reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i(i= 1, 2,..., k),
a training set, Dj, of d tuples is sampled with replacement from the original set of
tuples, D. Note that the term bagging stands for bootstrap aggregation. Each training
set is a bootstrap sample, as described in Section 8.5.4. Because sampling with replace-
ment is used, some of the original tuples of D may not be included in D;, whereas others
may occur more than once. A classifier model, M;, is learned for each training set, D;.
To classify an unknown tuple, X, each classifier, M;, returns its class prediction, which
counts as one vote. The bagged classifier, M, counts the votes and assigns the class
with the most votes to X. Bagging can be applied to the prediction of continuous values
by taking the average value of each prediction for a given test tuple. The algorithm is
summarized in Figure 8.23.

The bagged classifier often has significantly greater accuracy than a single classifier
derived from D, the original training data. It will not be considerably worse and is more

380 Chapter 8 Classification: Basic Concepts

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models
for a learning scheme where each model gives an equally weighted prediction.

Input:

D, a set of d training tuples;
k, the number of models in the ensemble;

a classification learning scheme (decision tree algorithm, naive Bayesian, etc.).

Output: The ensemble—a composite model, M.

Method:

(1) fori=1to kdo// create k models:

(2) create bootstrap sample, D;, by sampling D with replacement;
(3) use D; and the learning scheme to derive a model, M;;

(4) endfor

—_
1)
—t
I}
o
o
=
]
=~
—t+
=
o
bl
g
o
[aW
o
78
o
Q.
Iy
o«
»
2.
=<
<
N
=
[l
=
@
—
o
=
=]
—+
=
o
=]
2.
o
E."_.
~
g
-+
]

Figure 8.23

8.6.3

Sosowss 5>

i (sairjeol Sledsls 5l plaS,a a u;
Ak

oa el aSS @y asgi

Cawgals] s

I, d/1 0lwSy Vs sainjgol Sla ol @ a
ADIuo

Kolaso (salps addgi by al>j0 Koay 5L
Sl plecwMs

plial>0 >

U cssjgol 0315 acgazo 0,8 w D jl Ll
Soiteo Wigos d julw

Cod i3Sl b S)lsy digos

Bagging.

robust to the effects of noisy data and overfitting. The increased accuracy occurs because
the composite model reduces the variance of the individual classifiers.

Boosting and AdaBoost

We now look at the ensemble method of boosting. As in the previous section, suppose
that as a patient, you have certain symptoms. Instead of consulting one doctor, you
choose to consult several. Suppose you assign weights to the value or worth of each doc-
tor’s diagnosis, based on the accuracies of previous diagnoses they have made. The final
diagnosis is then a combination of the weighted diagnoses. This is the essence behind
boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier, M;, is learned, the weights are updated to allow the
subsequent classifier, M1, to “pay more attention” to the training tuples that were mis-
classified by M;. The final boosted classifier, M, combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose
we want to boost the accuracy of a learning method. We are given D, a data set of
d class-labeled tuples, (X1,51), (X2,2),...,(Xa,y4), where y; is the class label of tuple
X;. Initially, AdaBoost assigns each training tuple an equal weight of 1/d. Generating
k classifiers for the ensemble requires k rounds through the rest of the algorithm. In
round 4, the tuples from D are sampled to form a training set, D;, of size d. Sampling

oyls by Jaije 4 wlssil sy Jyb s Gl

o >LJ_, U9 A SlacwMS olucwl ,JJLJ)§|

o3 SlacwMS oluwl wlgl xS = 5bj wsg
misclassify

e @S Coud oyl s Vlis Mi slhs ¢
ool Sl Cull SigS> ogow

KNIV RIS
wi=wi* e(Mi)/(1-error(Mi)

wi=wi*(sum(old w)/sum(new)) /

96 oS wSlaaS |, x Jub augS>

vote Ul pwlecwMS 8 @ aS bagging WM,
NEWRU W

3 omb plecwMS Slas g ax,a <= wgﬂ)]‘

lo> wowls 1) 5)Ss Gy S awMS

8.6 Techniques to Improve Classification Accuracy 38l

with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, M;, is derived from
the training tuples of D;. Its error is then calculated using D; as a test set. The weights of
the training tuples are then adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify—
the higher the weight, the more often it has been misclassified. These weights will be
used to generate the training samples for the classifier of the next round. The basic idea
is that when we build a classifier, we want it to focus more on the misclassified tuples of
the previous round. Some classifiers may be better at classifying some “difficult” tuples
than others. In this way, we build a series of classifiers that complement each other. The
algorithm is summarized in Figure 8.24.

Now, let’s look at some of the math that’s involved in the algorithm. To compute
the error rate of model M;j, we sum the weights of each of the tuples in D; that M;
misclassified. That is,

. . 1=> missclassified
misclassification error :
d % 0=> o.w

Midso sl =20 error(M;) = Z w; x err(Xj), (8.34)
j=1

where err(Xj) is the misclassification error of tuple Xj: If the tuple was misclassified, then
err(Xj) is 1; otherwise, it is 0. If the performance of classifier M; is so poor that its error
exceeds 0.5, then we abandon it. Instead, we try again by generating a new D; training
set, from which we derive a new M;.

The error rate of M; affects how the weights of the training tuples are updated.
If a tuple in round i was correctly classified, its weight is multiplied by error(M;)/
(1 — error(M;j)). Once the weights of all the correctly classified tuples are updated, the
weights for all tuples (including the misclassified ones) are normalized so that their sum
remains the same as it was before. To normalize a weight, we multiply it by the sum of
the old weights, divided by the sum of the new weights. As a result, the weights of mis-
classified tuples are increased and the weights of correctly classified tuples are decreased,
as described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label
of a tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting
assigns a weight to each classifier’s vote, based on how well the classifier performed. The
lower a classifier’s error rate, the more accurate it is, and therefore, the higher its weight
for voting should be. The weight of classifier M;’s vote is

1 — error(M;)

error(M;) (8.35)

For each class, ¢, we sum the weights of each classifier that assigned class ¢ to X. The class
with the highest sum is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focuses on
the misclassified tuples, it risks overfitting the resulting composite model to such data.

o

382 Chapter 8 Classification: Basic Concepts

Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one
gives a weighted vote.

Input:
D, a set of d class-labeled training tuples;
k, the number of rounds (one classifier is generated per round);

a classification learning scheme.

Output: A composite model.
Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) fori=1to kdo// for each round:

(3) sample D with replacement according to the tuple weights to obtain D;;

(4) use training set D; to derive a model, M;;

(5) compute error(M;), the error rate of M; (Eq. 8.34)

(6) if error(M;) > 0.5 then

(7) go back to step 3 and try again;

(8) endif

9) for each tuple in D; that was correctly classified do

(10) multiply the weight of the tuple by error(M;)/(1 — error(M;)); // update weights
(11) normalize the weight of each tuple; wi=wi* e(Mi)/(1-error(Mi)

(12) endfor
To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;
(2) fori=1to kdo// for each classifier:

(3) w; = log%‘w; /] weight of the classifier’s vote
(4) ¢ = M;(X); // get class prediction for X from M;

(5) add w; to weight for class ¢

(6) endfor

(7) return the class with the largest weight; .

Figure 8.24 AdaBoost, a boosting algorithm.

VU 9 s 0yl cowgs Hipy Siwiiwgy
BRECPN YW
o overfitting sy

8.6.4

Therefore, sometimes the resulting “boosted” model may be less accurate than a single
model derived from the same data. Bagging is less susceptible to model overfitting. While
both can significantly improve accuracy in comparison to a single model, boosting tends
to achieve greater accuracy.

Random Forests

We now present another ensemble method called random forests. Imagine that each of
the classifiers in the ensemble is a decision tree classifier so that the collection of classifiers

